
© 2015 IBM Corporation

What's New in IBM
Java 8 SE?
Tim Ellison – Hursley labs.

About the Speaker

● Technical staff based in the Java
Technology Centre, Hursley UK

● Working on various runtime
technologies for >20 years

● Experience of open source
communities

● Currently focused on class library
design and delivery

● Overall technical lead for IBM Java 8
SE

 tim_ellison@uk.ibm.com

 @tpellison

Agenda

 Introduce you to IBM Java SE
– Explain how and why IBM Java is different to other Java runtime offerings
– Outline our goals, and strategy to achieve them in Java 8

 Briefly describe the standard Java 8 features
– Show how Java 8 SE was defined
– Give you an introduction to the key new features in standard Java 8

 Look at the new IBM features in a bit more detail
– Show you how IBM Java is addressing your problems
– Share our ideas and opportunities for shaping the future of Java

 Answer your questions

Over the next ~60 minutes, I hope to...

IBM Java SE
Introduction to

IBM's approach to Java SE technology

Reference
Java

Technology

Oracle, open
source, etc

IBM
Java

IBM Java
Technology

Centre

Quality
Engineering
Performance

Security
Reliability
Scalability

Serviceability

Production
Requirements

IBM Software Group
IBM hardware

ISVs
IBM Clients

 World class service and support

 Available on more platforms than any other vendor

 Optimised for IBM middleware and customer scenarios

 Deep integration with hardware and software innovation

V a l u e - a d d e d
p l a t f o r m s

O t h e r
p l a t f o r m s

J 9 V i r t u a l M a c h i n e H o t s p o t V M

C o r e l i b r a r i e s

X M L C r y p t o C O R B A

X 8 6 x 8 6 - 6 4 P o w e r z A r c h
L i n u x A I X z O S

W i n d o w s L i n u x L i n u x

x 8 6 - 6 4 S p a r c P A - R I S C i a 6 4
S o l a r i s H P - U X

A W T S w i n g J a v a 2 d

XML Crypto Corba

“J9” Virtual machine

IBM invests in Java technology to make it ready for the most
demanding business applications

 Performance
– Performance is key for all Java customers
– IBM has decades of experience in performance engineering and cares deeply about creating high

performance, scalable solutions
– We leverage this experience and close relationships with hardware, operating system and middleware

designers to drive best in class performance across our supported platforms

 Security
– IBM is a key contributor to Java and XML security standards
– We offer FIPS certified JCE and JSSE providers and broad hardware crypto support

 Reliability
– Java is used in mission-critical applications
– IBM has carefully redesigned the JVM, the engine at the heart of the Java runtime, for high reliability

 Serviceability
– In the event of failure, it is critical that problems can be found and isolated quickly
– IBM focuses on trace and logging capabilities, first failure data capture, debugging and performance

interfaces and tools to ensure rapid problem resolution

 Scalability
– Highly configurable runtimes for a variety of application profiles
– Pluggable interfaces with different implementations to match target requirements
– New class library technology available underpinning appropriate specification APIs

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

A Bit of History: Java SE

7.06.0

• Performance improvements
• Improved UI
• Client WebServices Support
• Jconsole monitoring
• Collection framework enhancements

Java 6.0
• New Language features

• Autoboxing
• Enumerated types
• Generics
• Meta Data

Java 5.0

• Improvements in
• Start up performance
• Throughput performance
• New Balanced GC
• New feature in serviceability tooling
• Soft Realtime evaluation
• Performance exploitation of POWER7

z196™ Exploitation
OOO Pipeline
70+ New Instructions

JZOS/Security Enhancements

IBM Java 6.0.1 & 7.0
• Improved performance

• Generational Garbage Collector
• Shared classes support
• New JIT technology

• First Failure Data Capture
• Configurable Trace
• Full Speed Debug
• Hot Code Replace
• Common runtime technology

• ME, SE, EE

IBM Java 5.0

• Small language changes
• Improved IO APIs (NIO2)
• Invoke Dynamic
• Concurrency framework

Java 7.0

• Improvements in
• Platform coverage
• Performance
• Serviceability tooling

• New Functionality
• IBM WebSphere Real-

Time V1.0
z10 Exploitation
DFP exploitation for

BigDecimal
Large Pages

IBM Java 6.0

7.1

Standard Java Features

• Lambdas
• Date and time

Type annotations
• Profiles

Java 8.0

Improvements in
Performance
GC technology

zEC12 Exploitation
Transactional execution
Runtime Instrumentation
Flash 1Meg pageable LPs
2G large pages
Hints/traps

Data Access Accelerator
Cloud: Multi-tenancy/Virtualization

IBM Java 7.1

Additional IBM Java Features

8.0

6 7 8

6.01 & 7.0 865 7.1

IBM Java SE platform coverage

IBM supported platforms Linux AIX Windows z/OS Solaris HP-UX

Intel 32-bit X X X

AMD 64-bit X X X

PowerPC 32-bit BE X X

PowerPC 64-bit BE X X

PowerPC 64-bit LE X

z System 31-bit X X

z System 64-bit X X

Itanium 32-bit X

Itanium 64-bit X

Sparc 32-bit X

Sparc 64-bit X

For full details of supported platforms visit http://www.ibm.com/developerworks/java/jdk/docs.html

 IBM continues to offer quarterly service releases and APAR deliveries of Java 7, 6 and 5.
● Ensures security fixes will be delivered rapidly to the field across all platforms.

 Key dates
● Java 5

● GA 2005
● went out of currency in September 2013.
● only receives customer and security fixes.
● goes out of service in September 2015 (zOS Sept 2013).

● Java 6
● GA 2007
● will go out of currency in September 2015
● receives platform & OS updates, as well as customer and security fixes.
● goes out of service in September 2017 (zOS to be announced)

● Java 7
● GA 7.0 2011, GA 7.1 2013
● will go out of currency in September 2017
● receives enhancements, platform & OS updates, as well as customer and security fixes.
● goes out of service in September 2019 (zOS to be announced)

● Java 8
• GA February 2015
• Receives enhancements, platform & OS updates, as well as customer and security fixes.

IBM Java Service Schedule

ref: http://www.ibm.com/developerworks/java/jdk/lifecycle/

Java 8 – Standard Features

11

Java 8 SE Standards Structure

● Java Specification Request (JSR) 337
– Java Specification Request that pulls together the set of changes proposed for Java SE
– Umbrella document describing the themes of the release and operating rules

● Release drivers
– Lambda expressions

• Java language changes to support multi-core programming
• Corresponding changes to collections APIs to exploit parallelisation

– Virtual extension methods
• Language constructs designed for library evolution
• Enhancements to existing interfaces to provide new functionality

● Component JSR specifications and Java Enhancement Proposals (JEPs)
– A list of ~55 significant items delivered as part of Java 8 GA
– JSRs are developed in conjunction with Java 8, and incorporated
– Each JEP is at least two weeks platform development work

● Features, bug fixes, and security patches
– Hundreds of smaller pieces of work that don't warrant a JEP

Anonymous Inner Classes
 Currently anonymous inner classes are used for passing context (poorly)

– Bulky syntax and confusion surrounding the meaning of names and “this”
– Inflexible class-loading and instance-creation semantics, often leading to 'class leaking'
– Inability to capture non-final local variables

– Often used with:
• java.lang.Runnable
• java.security.PrivilegedAction
• java.io.FileFilter
• java.beans.PropertyChangeListener
• ...etc

final State myState = ...
model.addEventListener(new Listener() {
 public void eventCallback(Event e) {
 if (myState.isActive() && e.isInteresting()) {
 ...
 };
 }
});

JSR 335 – Lambda expressions

 Lambda expressions in Java 8 have a simple syntax
– Think of them as “anonymous methods”
– No need for the class definition infrastructure

() -> Integer.SIZE;

(int x, int y) -> x + y

(String s, int x) -> { x+=2; System.out.println(s); return x;}

 No new level of lexical scoping, so variable names and 'this' are identical to
enclosing environment

 The Java 8 compiler will allow references to 'effectively final' variables even if they
are not marked final

– compiler data flow determines that the value is not being modified by the lambda expression

State myState = …
Listener ear = (Event e) -> {
 if (myState.isActive() && e.isInteresting()) {
 ...
 };
};
model.addEventListener(ear);

Lambdas enable localization of operations

 Lambdas allow the control flow for operations on data to reside near the data

 e.g. internal iteration
– New methods on collections that accept Lambda expressions as operations on them

– Allows the data collections to decide how to iterate over elements
• Laziness, out-of-order execution, parallelism

for (MyType element : myCollection) {
 element.reset();
};

myCollection.forEach(element -> {element.reset();});

Java 7 syntax

Java 8 syntax

Lambdas enable data stream operations

 The operations on data structures can now be pipelined into a stream

 Streams can re-order and optimize lambda operations based on the characteristics of the
underlying data stream

– ORDERED, DISTINCT, SORTED, SIZED, NONNULL, IMMUTABLE, CONCURRENT, and
SUBSIZED.

 Ask your collection / IO channel / function for a stream, describe operations, gather results.
– Intermediate operations on streams produce new streams
– Terminal operations produce results

 Intermediate operations can be lazy, terminal operations will be eager

Stream<MyType> stream = myCollection.stream()

.filter(element -> element.length() == 0)

.forEach(element -> { element.reset(); });

Set<MyType> emptyTypes = stream.into(new HashSet());

 ~ Stream Pattern in Java 8 ~

Virtual extension methods

 Recognize that Lambda and stream operations are useful on existing collection types

 Need some way to extend well established data structures while retaining compatibility

 Option 1: Creating parallel hierarchy of similar structures
– Bulky class library with constant need to juggle types

 Option 2: Adding a new method to an existing interface
– Binary compatible, but disenfranchises implementers

 Option 3: Enhance language to provide default implementations in interfaces
– Interface declarations contain code, or references to code, to run if classes do not provide an

implementation

public interface Set<T> extends Collection<T> {

public boolean add(E e);

public void clear();

...

public void forEach(Block<T> blk)

default Collections.<T>setForEach;

}

JSR 308: Annotations on Java Types
 Extending the scope of annotations as introduced in Java 6

– Annotate type usage, not just type declaration
– Carried in class files for robust development time checking

 Allows for pluggable extensions to Java language type checking
– Strengthen and refine the built-in type system
– Type annotations can be written before any type, e.g. @NonNull String

 Software quality and security
– Null pointer errors, side effects on immutable data, race conditions, information leakage, non-

internationalized strings, etc.

 Checkers framework use additional information
– Non-prescriptive use of annotations allows for varied tooling
– Expect to see variety of coding tools use annotations for developer feedback

List<@NonNull String> strings;

myGraph = (@Immutable Graph) tmpGraph;

class UnmodifiableList<T> implements @Readonly List<@Readonly T> { ... }

@Tainted String entry;

 ~ Expected usage? ~

JSR 310: Date and Time API

 A new, modern, date and time API for Java

 Current date and time types are split across multiple packages
– java.util, java.sql, java.text, etc.

 API could be improved in a number of ways...
– java.util.Date is actually a timestamp!
– Based on years from 1900 onwards
– Calendar instances cannot be converted to simple date formatted strings
– etc.

 JSR-310 is a top to bottom review of the date and time handling in Java
– Based upon relevant standards, including ISO-8601, CLDR, and BCP47
– Types represent point in time, duration, and localization

java.time
main API for dates, times, instants, and durations

java.time.calendar
Support for Hijrah, Japanese, Minguo, Thai Buddest calendar systems

java.time.format
Provides classes to print and parse dates and times

java.time.temporal
Expands on the base package for more powerful use cases

java.time.zone
Support for time-zones and their rules

More standard Java 8 features, at a glance...

 Language
– Access to Parameter Names at Runtime
– Add Javadoc to javax.tools (JSR 199 MR)
– Annotations on Java Types (JSR 308)
– Generalized Target-Type Inference (JSR 335)
– Lambda Expressions & Virtual Extension Methods (JSR 269 MR, 335)
– Repeating Annotations (JSR 269 MR, 337)

 Core Libraries
– Base64 Encoding & Decoding
– Bulk Data Operations for Collections (JSR 335)
– Concurrency Updates
– Date & Time API (JSR 310)
– Enhance Core Libraries with Lambda (JSR 335)
– JDBC 4.2 (JSR 114 MR, 221 MR)
– Parallel Array Sorting

 I18n
– BCP 47 Locale Matching
– Unicode 6.2

http://openjdk.java.net/

 Security
– Configurable Secure Random-Number Generation
– Enhance the Certificate Revocation-Checking API
– Limited doPrivileged
– NSA Suite B Cryptographic Algorithms
– TLS Server Name Indication (SNI) Extension

 Platform
– Compact Profiles
– Prepare for Modularization (JSR 160 MR, 173 MR, 206 MR, 337)

Java 8 – IBM unique features

Java 8 – IBM unique features

Hardware exploitation

22

IBM z13 and IBM Java 8 – designed together

Continued aggressive investment in Java on Z

Significant set of new hardware features tailored and
co-designed with Java

Simultaneous Multi-Threading (SMT)
– 2x hardware threads/core for improved throughput
– Available on Integrated Information Processor (zIIP),

and Integrated Facility for Linux (IFL)

Single Instruction Multiple Data (SIMD)
– Vector processing unit
– Accelerates loops and string operations

Cryptographic Function (CPACF)
– Transparently accelerate IBMJCE security provider
– Block ciphering, Secure Hashing and Public Key

Cryptography

New Instructions

Up to 2X improvement in
throughput per core for
security enabled applications

Up to 50%
improvement for
generic applications

No application
code changes!

2323

The Result: Java Application Server Performance
Combined effect of moving from zEC12 Java 7 to z13 Java 8

(Controlled measurement environment, results may vary)

2.62x improvement in throughput with IBM Java 8 and IBM z13

IBM POWER Architecture and IBM Java 8

● Focus on new support built into POWER 7 and POWER 8 hardware
● Transactional Memory (seeing 2x on select concurrent classes)
● On-Core AES crypto 2.5 x faster, 30-40% faster than vector multimedia

extension (VMX)
● Simultaneous Multi-threading SMT8 exploit, 20% improvement over

SMT4
● General instruction set improvements – DirectMove, Vector load/store
● JIT improvements

• New prefetching capabilities
• Extended divide instructions
• Conversion between integer and float
• Bit permutation and popcount instructions
• BCD assist - Exploited through Java BigDecimal

● IBM Java on POWER Little Endian (LE) configurations

● IBM Java support for co-processors (FPGA, GPU, Security, etc)

24

Websphere Application Server on POWER8

• Exploit Significant Parallelism
Offered by Power 8

• Exploit Transactional Memory

• Improve Per Core
Performance

• Reduce Virtualization
Overhead with PowerVM

• Exploit Faster Networking and
Storage Capabilities

• Improve Security Workload
Performance

• Exploit Larger Cache including
L4 Cache

25

IBM hardware + IBM Software → Unbeatable System Performance

Java 8 – IBM unique features

GPU off loading

27

IBM Power 8 – now with GPU acceleration

 Typical scenario for heterogeneous programming:

– Host computer with CPU(s) and GPU(s) installed
on PCIe bus

– Programmer identifies parallelizable, compute
intensive routine, and codes to GPU

– Flow of data and control passes between CPU
host and GPU device under control of host device

• GPU devices plug into the host PCIe bus to provide massive arrays of co-processors

• CUDA4J : a low-level interface to the GPU for applications that want direct control from Java, enabling reuse of kernels from Java,
faster time to market

• Java SE library exploitation : backing standard Java APIs with a GPU implementation for improved performance (sort, etc)

• Dynamic workload off-loading : identifying patterns in application code that will benefit from parallelisation directly in the JIT

Three-tiers of exploitation in Java:

Particularly suited to scientific and numerical analysis problems (e.g. linear algebra). We have
focused on Nvidia CUDA as the programming model for exploiting GPUs.

28

Fundamental types in CUDA4J

CudaBufferCudaBuffer
 PTX

.func add { … }

.func foo { … }

.func bar { … }

CudaEvent

CudaFunction

CudaGlobal

CudaLinker

Java CudaSurface
CudaTexture

CudaDevice

CudaDevice
CudaModule CudaKernel

CudaKernel

CudaBufferCudaBuffer

CudaGrid

add{}

Device events

CudaStream

CudaModule

Relationship for generating an instance
Relationship as an argument

Used to combine multiple cubin/fatbin/PTXs
into single module

Corresponds to a HW feature in GPU

CudaFunction
foo{}

execution
engine

device
memory

29

Limitations and considerations

 Allows developers to code explicitly for the GPU
– These are new APIs that give close control of the device
– Uses familiar concepts and paradigms for GPU experts
– Convenience and productivity improvements from language
– Fundamental building blocks for higher level algorithms

 Requires the developer to identify suitable GPU workloads
– Re-code routines to operate on data in parallel
– Minimize branching flow of control in kernels

 Amortizing overhead of moving work to GPU
– Time taken to copy data between host and device over PCIe
– Overhead of switching flow of control from CPU to GPU

Flickr: Gareth
Halfacree

30

GPU-enabling standard Java SE APIs
 Natural question after seeing the good speed-ups using explicit programming …

 What areas of the standard Java API implementation are suitable for off-loading onto GPU?

 We picked

java.util.Arrays.sort(int[] a) and friends
– GPU modules exist that do efficient sorting

We employ heuristics that determine if the work should be off-loaded
to the GPU.

 Overhead of moving data to GPU, invoking kernel, and
returning results means small sorts (<~20k elements)
are faster on the CPU.

 Host may have multiple GPUs. Are any available for the task?

 Is there space for conducting the sort on the device?

IBM Developer Kits for Java
ibm.com/java/jdk

Is the problem
large enough?

Is there a
GPU currently

available?

Is the
device

capable?
Sort on CPUSort on GPU

yes

yes

yes

no

no

no

http://ibm.com/java/jdk

31

GPU-enabled array sort method

IBM Power 8 with Nvidia K40m GPU

32

Beyond specific APIs – Java 8 streams

 Streams allow developers to express computation as aggregate parallel operations on data

 For example:

IntStream.range(0, N).parallel().forEach(i > c[i] = a[i] + b[i]);

creates a stream whose operations can be executed in parallel

 What if we could recognize the terminal operation and conduct it on the GPU?
 Reuses standard Java idioms, so no code changes required
 No knowledge of GPU programming model required by the application developer
 But no low-level manipulation of the device – the Java implementation has the controls
 Future smarts introduced into the JIT do not require application code changes

33

JIT / GPU optimization of Lambda expression

JIT recognized Java code for matrix multiplication using Java 8 parallel stream

Speed-up factor when run on a GPU enabled host

IBM Power 8 with Nvidia K40m GPU

Java 8 – IBM unique features

ZIP compression off-loading

zEnterprise Data Compression (zEDC)

 What is it?
 zEDC Express is an IO

adapter that does high

performance industry

standard compression

 Used by z/OS Operating

System components,

IBM Middleware and ISV

products

 Applications can use

zEDC via industry

standard APIs (zlib and

Java)

 Each zEDC Express

sharable across 15

LPARs, up to 8 devices

per CEC.

 Raw throughput up to 1

GB/s per zEDC Express

Hardware Adapter

Using IBM Java 7R1 :
Java applications compress files using java.util.zip.GZIPOutputStream class

Up to 91% reduction in CPU time using zEDC hardware versus zlib software

Up to 74% reduction in Elapsed time (not shown)

Compression ratio up-to ~5x

PowerPC : Field-Programmable Gate Arrays (FPGAs)

 Hardware-backed Java compression APIs

Work sent to custom card firmware rather than
the CPU.

Not only does it run faster on the card, but it
frees up the CPU to do other things.

Benchmarking Liberty Power Linux shows high
performance extensible log (HPEL) engine
writes compressed logs as quick as
uncompressed

Java 8 – IBM unique features

Remote Direct Memory Access

What is RDMA?

Java Application
Server

Buffer

Off
Heap

Buffer

Java Application
Client

Buffer

Off
Heap

Buffer

Ether/IB
SwitchRDMA NIC/HCA RDMA NIC/HCA

OS OS
DMA DMA
(Z-Copy) (Z-Copy)

(B-Copy)(B-Copy)

Remote Direct Memory Access (RDMA) Communication

Acronyms:
Z-Copy – Zero Copy

B-Copy – Buffer Copy
IB – InfiniBand

Ether - Ethernet
NIC – Network Interface Card
HCA – Host Control Adapter

● Low-latency, high-throughput networking
● Direct 'application to application' memory pointer exchange between remote hosts
● Off-load network processing to RDMA NIC/HCA – OS/Kernel Bypass (zero-copy)

39

Remote Direct Memory Access (RDMA)

● Protocols for high-performance network fabrics – 10/40/56 Gbps
● Transparent availability over java.net.Socket APIs
● Enables data caches, workloads, even virtual images to be hardware transient

TCP/IP

RDMA

Throughput Latency

Java 8 – IBM unique features

Data Access Accelerators &
Packed Objects

41

Data Access Accelerator (DAA)

Data-centric tasks such as big data, analytics and inter-language communication
require optimal performance for accessing and operating on native format data
records and types from Java. Prefer to avoid object creation, data copying,
abstraction, boxing etc

DAA provides a Java library for bare-bones data conversion, arithmetic etc.

Provides native-oriented operations directly on Java byte arrays

Orchestrated with JIT for deep platform optimization
➔ No intermediate Java objects created when recognized by the IBM JIT
➔ Avoid expensive Java object instantiation by allowing in-place operations

Benefits:

Expose hardware acceleration in a platform and JVM-neutral manner (2 – 100x
speed-up)

Can provide significant speed-up to record parsing frameworks

Can provide significant speed-up for data marshaling and inter-language
communication

IBM Java SDK: Packed objects support

 Java requires memory to be in Java
“object” form to be accessed directly

 External data needs to be read into Java
heap format to use – conversion is
expensive

 Memory bloat occurs due to data copies
and headers

 Natural object representation looses data
locality properties

 PackedObjects enables direct access to
data in arbitrary formats without the
redundant copying; no conversion

 PackedObjects data can be in native
memory or Java heap space

data

data
copy

header

object
array [] header

data
copy

header

data
copy

header

data
copy

header

data data data

heap
objects

native
memory

packed
array []

Native or
heap memory

43

Packed Objects: Heap referenced data

int y
int x

aPoint

Object header

Object field / data

int y
int x

aPointPoint b
Point a

aLine

int y
int x

int y
int x

aPackedLine

offset
target

Point c

int y
int x

aPoint

int y
int x

44

Packed Objects: Heap referenced data

int y
int x

aPoint

Object header

Object field / data

int y
int x

aPointPoint b
Point a

aLine

int y
int x

int y
int x

aPackedLine

offset
target

Point c

int y
int x

aPoint

int y
int x

offset
target

aPackedLine.b

45

Packed Objects: In Practice with Native Access

int y
int x

Object header

Struct field / data

offset
target

aPackedLine

Java Native

Ø

@Packed
final class PackedPoint extends PackedObject {

int x;
int y;

}

int y
int x

int y
int x

Java 8 – IBM unique features

Cloud enhancements

47

Docker and IBM Java’s shared classes, faster startup + higher density

10 instances of an app server in Docker containers
~2x better density, ~2x faster startup

IBM Java SDK: Cloud support

 -Xtune:virtualized includes a 'deep idle' mode for the JIT
– Reduces background JIT activity when the application is idle by ~85%

 Improved OperatingSystemMxBean
– New operating system queries supported to allow applications to adjust to current load

conditions as dynamic situation changes

– New API includes:
• processCpuLoad()

• getFreeSwapSpaceSize()

• getTotalSwapSpaceSize()

 -Xsoftmx everywhere
– Allows runtime modification of JVM heap size programmatically, can

be used to take advantage of hypervisor hot-add memory, or to
reduce heap size in idle programs.

– Generalization of an AIX DLPAR feature

Java 8 – IBM unique features

Monitoring and Management Tools

50

■ New Features
 Enhanced com.ibm.jvm.Dump API
 Additional information in javacore dumps
 Improved JIT diagnostics
 Improved performance of SDK method trace
 New JVMTI extensions for subscribing to tracepoints
 Improved SDK tracepoints

■ Customer benefits

 Improved API enables Java applications to capture dump diagnostics easily

 Additional content of environment and thread sections in the javacore dump aids
first failure diagnosis

 New JIT dump allows more rapid investigation and first failure diagnosis of JIT
problems

 Increased application throughput when tracing enables a powerful SDK facility for
investigating Java application flow

 Improved facility for integration of SDK trace with other software components

 Extended tracepoint coverage improves SDK serviceability

IBM Java

Enhanced Monitoring and Diagnostics

Runtime Monitoring and Management Tools

Tools and documentation for application monitoring and problem diagnosis.
 Free unified suite of tools to understand different aspects of Java

applications.
 Lightweight, low performance overhead monitoring and diagnostics.
 Provide more than visualizations – also provide observations and

recommendations.

Tools in the IBM Monitoring and Diagnostic Tools Portfolio:

For More Information Visit:
http://www.ibm.com/developerworks/java/jdk/tools/index.html

Interactive Diagnostic Data Explorer

Garbage Collection and Memory Visualizer

Memory Analyser

Health Centre

53

 Diagnostics Collector removed
– Use IBM Support Assistant Data collector instead

 Java serial communications API no longer available in IBM Java 8

 Legacy operating system support removed

– Windows XP, Server 2003

– Linux RHEL 5, SLES 10, Ubuntu 8.04 & 10.04, Asianux Server 3

Additional things to note...

54

References

 Get Products and Technologies:
– IBM Java Runtimes and SDKs:

• https://www.ibm.com/developerworks/java/jdk/
– IBM Monitoring and Diagnostic Tools for Java:

• https://www.ibm.com/developerworks/java/jdk/tools/

 Learn:
– IBM Java InfoCenter:

• http://www.ibm.com/support/knowledgecenter/SSYKE2/welcome_javasdk_family.html

 Discuss:
– IBM Java Runtimes and SDKs Forum:

• http://www.ibm.com/developerworks/forums/forum.jspa?forumID=367&start=0

https://www.ibm.com/developerworks/java/jdk/
https://www.ibm.com/developerworks/java/jdk/tools/
http://www.ibm.com/support/knowledgecenter/SSYKE2/welcome_javasdk_family.html
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=367&start=0

Notices and Disclaimers
Copyright © 2015 by International Business Machines Corporation (IBM). No part of this document may be reproduced or
transmitted in any form without written permission from IBM.

U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM.

Information in these presentations (including information relating to products that have not yet been announced by IBM) has been
reviewed for accuracy as of the date of initial publication and could include unintentional technical or typographical errors. IBM
shall have no responsibility to update this information. THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY,
EITHER EXPRESS OR IMPLIED. IN NO EVENT SHALL IBM BE LIABLE FOR ANY DAMAGE ARISING FROM THE USE OF
THIS INFORMATION, INCLUDING BUT NOT LIMITED TO, LOSS OF DATA, BUSINESS INTERRUPTION, LOSS OF PROFIT
OR LOSS OF OPPORTUNITY. IBM products and services are warranted according to the terms and conditions of the
agreements under which they are provided.

Any statements regarding IBM's future direction, intent or product plans are subject to change or withdrawal without
notice.

Performance data contained herein was generally obtained in a controlled, isolated environments. Customer examples are
presented as illustrations of how those customers have used IBM products and the results they may have achieved. Actual
performance, cost, savings or other results in other operating environments may vary.

References in this document to IBM products, programs, or services does not imply that IBM intends to make such products,
programs or services available in all countries in which IBM operates or does business.

Workshops, sessions and associated materials may have been prepared by independent session speakers, and do not
necessarily reflect the views of IBM. All materials and discussions are provided for informational purposes only, and are neither
intended to, nor shall constitute legal or other guidance or advice to any individual participant or their specific situation.

It is the customer’s responsibility to insure its own compliance with legal requirements and to obtain advice of competent legal
counsel as to the identification and interpretation of any relevant laws and regulatory requirements that may affect the customer’s
business and any actions the customer may need to take to comply with such laws. IBM does not provide legal advice or
represent or warrant that its services or products will ensure that the customer is in compliance with any law.

Notices and Disclaimers (con’t)

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products in connection with this
publication and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.
IBM does not warrant the quality of any third-party products, or the ability of any such third-party products to
interoperate with IBM’s products. IBM EXPRESSLY DISCLAIMS ALL WARRANTIES, EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any
IBM patents, copyrights, trademarks or other intellectual property right.

• IBM, the IBM logo, ibm.com, Bluemix, Blueworks Live, CICS, Clearcase, DOORS®, Enterprise Document
Management System™, Global Business Services ®, Global Technology Services ®, Information on Demand,
ILOG, Maximo®, MQIntegrator®, MQSeries®, Netcool®, OMEGAMON, OpenPower, PureAnalytics™,
PureApplication®, pureCluster™, PureCoverage®, PureData®, PureExperience®, PureFlex®, pureQuery®,
pureScale®, PureSystems®, QRadar®, Rational®, Rhapsody®, SoDA, SPSS, StoredIQ, Tivoli®, Trusteer®,
urban{code}®, Watson, WebSphere®, Worklight®, X-Force® and System z® Z/OS, are trademarks of
International Business Machines Corporation, registered in many jurisdictions worldwide. Other product and
service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on
the Web at "Copyright and trademark information" at: www.ibm.com/legal/copytrade.shtml.

http://www.ibm.com/legal/copytrade.shtml

