
© 2014 IBM Corporation

IBM Software

Building a better product with
data analytics and the cloud

Kevin Smith (smithk6@uk.ibm.com)

Test Architect, WebSphere Application Server – Liberty Profile

© 2014 IBM Corporation

Test run frequency

Tolerance of regressions

during code development

Time to known

quality

Stabilisation

Phase

The drive towards continuous delivery is driving changes in
how we ensure quality

2

Waterfall

•
Team would generally
start to make software
ready for release when
all functionality for the
release has been
developed.

Months

N/A

High

Weekly

Agile

•
Team should get their
software ready for
release throughout
development at
periodic intervals.

Weeks

Days

Low

Daily

Continuous
Delivery

•
Team keeps software
ready for release at all
times during
development.

Hours/Days

Hours

Zero

Every Change

© 2014 IBM Corporation

Delivery

Task 2

Delivery

Task 1

Continuous delivery lifecycle

Development Story

•Code

•Tests

•Documentation

Test Review

•By test lead/architect

Complete

•Ready to be picked up
by release stream

Develop
Solution

Buddy Check

Personal Build

Pre Delivery
Verification

Deliver Code

Continuous
Build

Automated
Result

Verification

Develop
Solution

Buddy Check

Personal Build

Pre Delivery
Verification

Deliver Code

Continuous
Build

Automated
Result

Verification

3

© 2014 IBM Corporation

Different “builds” for different use cases

Build Type Coverage

Hours of functional

test per build

Frequency

Peak Daily

Runs

Comment

Personal Golden Path +

Common Error Paths

15 On demand

200 Required prior to code delivery

Continuous Golden Path +

Common Error Paths

15 Every 2 hours

12 Verify new code deliveries to ensure

there are no hard regressions.

Release Golden Path +

Common Error Paths

15 3 / day 3 Release Candidates

Iterations can only close when

release build has 100% of tests

passing.

Full Entire Corpus

36 2 / day 2 Initial sanity check of full corpus prior

to launching SOE testing

Supported

Operating

Environment

Entire Corpus 36 1-2 / week 140 One SOE execution runs the entire

corpus on 140 different OS/JDK

platforms.

Total 357

Note: 357 build per day equates to nearly a year of testing in a single 24 hour period.

4

© 2014 IBM Corporation

WAS Liberty Multi-Machine Build
(Liberty end-to-end build time: 3 hours)

Traditional Single
Machine Build

(Liberty build time:
18 hours)

Anatomy of a build

Build

Compilation
(Code, Tests
plus Running

Static Analysis)

Unit Test
Build

Verification
Test

Functional Test

Child 1 Child 2 … Child 12

Build

Compilation
(Code, Tests

plus Static
Analysis)

Unit Test

Build
Verification

Functional
Test

 In order to ensure quality at all times each build must verify there

are no regressions.

 Verification can be expensive – WAS Liberty golden path verification

requires approx. 15 hours of CPU time.

 Solution: It must be parallel.

– This requires a lot of hardware – 15 machines per build.

– 600+ machines in total.

5

© 2014 IBM Corporation

Introducing the Elastic Build Cloud

Build Provider

Rational
Team

Concert

 SCO

System Pattern

 Operating Systems

 Script Packages

 UCD

Blueprint

 Agent

 Components

VMWARE

1. Request Build 2. Build Request Noticed

4. Blueprint Deployed

6. Results Returned

6

© 2014 IBM Corporation

Scaling the Elastic Build Cloud – Liberty EBC in numbers

6
Blueprints

35
Definitions

200
Systems

420 Jobs

>2,000,000
Tests

2
4

 h
o

u
rs

 i
n

 t
h

e
 L

ib
e
rt

y
 E

B
C

 6 * OS / UCD agent / Jazz Build Engine / Liberty Build Scripts

Coming soon: More platforms, Jenkins, complex topologies.

25% of Liberty cross platform testing.

Target: 100% of cross platform testing plus developer builds.

Concurrently each with 2 vCPUs, 6GB RAM, 80GB Disk

on one x86 hypervisor with 10 nodes.

Goal: 600 x86, 400 PPC, 150 zVM + static pools.

Provision:

Teardown:

Job Execution:

4 minutes

3 minutes

180 minutes

Total execution time: 1260 hours

 (52 Days)

Concurrent provisions: 50

99.8% Pass

0.2% Fail/Error

7070 test execution buckets

~250 GB of test artifacts

7

© 2014 IBM Corporation

Future for the Elastic Build Cloud

8

© 2014 IBM Corporation

Why does Liberty need to perform test analytics?

9

 Liberty generates a lot of test data…

– On a busy day we can expect to run over 300 builds with each executing between 15 -36 hours of testing.

– The Supported Operating Environments (SOE) builds cover ~140 platforms (OS/JDK combinations).

– We are approaching running 1 year of testing in 24 hours!

 The test data we generate is complex…

– Each failure may have a different cause requiring analysis.

– Liberty is complex and thus so are its tests.

 Analysis of the test data is expensive…

– We expect test failures to be investigated as quickly as possible.

– Investigation is often a manual process.

 We need fast feedback on regressions…

– The faster we find issues, the cheaper it is to fix.

– Short release cycles mean limited time to identify and fix issues.

© 2014 IBM Corporation

What data to we collect and how do we collect it?

10

 The key element of data we collect is a bucket result: the outcome of running a group of related tests.

 For a bucket result we collect (an abridged list):

– The bucket which ran and the number of its tests which passed, failed or encountered an error.

– Details of every change made in the code base since we last ran:

• What changed.

• Who changed it and when.

– Details of the environment we executed on.

 Additionally we collect details of what execution issues were encountered (infrastructure failures).

© 2014 IBM Corporation

Analytics infrastructure

11

Rational Team Concert

RTC Build Definitions

Release

Full Fat

SOE
(Linux)

SOE
(HP-UX)

SOE
(AIX)

SOE
(…)

Personal
Builds

Dashboards

Work Items

Data Collection (Running on WAS Liberty)

Result
collection

servlet

Changeset
collection

servlet

Problem
collection

servlet

Intelligent
respin
servlet

Analytics
Database

Analytics Front End

Front-end
application

SPSS
Modeler

Changesets

Build Engine Farm

Elastic Build Cloud

Continuous

Bucket
Balancing

© 2014 IBM Corporation

How are we using analytics?

12

 Automated reporting:

– Generate real time view of our quality:

• Trends over time.

• Complete view of quality for single build of the product.

– Self-service frontend application running on Liberty which allows anyone to view/create reports.

– Integration with Rational Team Concert.

 The benefits of automated reporting:

– Analytics has allowed us to explore our data and produce visualizations we hadn’t previously considered.

– Live customisable views of the data.

© 2014 IBM Corporation

How are we using analytics?

13

© 2014 IBM Corporation

How are we using analytics?

14

© 2014 IBM Corporation

How are we using analytics?

15

 Advanced interrogation of our data:

– Analytics has allowed us to quickly and easily interrogate our data by creating new streams.

 A recent example:

– Our builds were taking longer than normal to run, causing build queues, intermittent failures and slowing development.

– We used analytics to identify a relationship between build times and the virtualized hardware running the build.

– This entire process had a turn-around time of 8 hours!

– 25% reduction in execution time.

– 150% increase in “green” builds.

© 2014 IBM Corporation

How are we using analytics?

16

 Intelligent bucket distribution – Using data to dynamically change our build process:

– The majority of our builds run our test buckets asynchronously in a number of child builds (usually 15).

– A build does not finish until all of its child builds have finished.

– The buckets all take varying amounts of time to run.

– We previously distributed the buckets amongst the child builds via a naïve round-robin algorithm.

– The build now calls out to the analytics which uses historical data to bin the buckets and returns an optimal distribution.

 The benefits of intelligent bucket distribution:

– End-to-end build time reduced by 20%.

© 2014 IBM Corporation

What’s next for our analytics

17

 Targeted testing (extending the intelligent bucket distribution):

– The earlier we identify a test failure the earlier we can begin to triage it and fix it.

– We are working to use analytics to prioritize buckets we expect to fail before those we expect to pass.

– We can do this by examining the changes in the build comparing them to changes/failures we have seen historically.

 The benefits of targeted testing:

– By identifying and triaging test failures as early as possible we can start fixing them as early as possible.

– We may opt to run buckets with high risk of failure multiple times to be thorough.

– We may opt to run buckets which fail intermittently multiple times to gather additional debug data.

– It may eventually be possible to omit low-risk buckets in personal builds to speed up development.

© 2014 IBM Corporation

What’s next for our analytics

18

 Auto-Triage:

– Test failures are currently triaged manually by build monitors.

– Our developers take turns at being build monitors for 1 iteration (2 weeks) at a time.

– We have 3 build monitors working full time in 3 different geographies to provide continual monitoring.

– Identifying known test failures and raising defects is currently a manual process - it is a full-time job.

 The benefits of auto-triage:

– We can automate the more mundane build monitoring tasks such as raising defects.

– This frees up build monitors to dedicate their time to investigating complex failures or fixing them.

– As we collect data on infrastructure issues as they occur we can identify test failures caused by them.

– Analytics can provide additional insight into test failures and identify trends among failures.

– By raising defects quickly (and including more information) we can fix them more quickly.

– We can potentially verify defects automatically when they are fixed.

© 2014 IBM Corporation

Questions

19

