
© 2014 IBM Corporation

Session INO-2739
Differentiating between
web APIs, SOA, & integration
…and why it matters
Kim Clark (kim.clark@uk.ibm.com)
Brian Petrini (petrini@us.ibm.com)

Please Note
IBM’s statements regarding its plans, directions, and intent are subject to change
or withdrawal without notice at IBM’s sole discretion.

Information regarding potential future products is intended to outline our general
product direction and it should not be relied on in making a purchasing decision.

The information mentioned regarding potential future products is not a
commitment, promise, or legal obligation to deliver any material, code or
functionality. Information about potential future products may not be incorporated
into any contract. The development, release, and timing of any future features or
functionality described for our products remains at our sole discretion.

Performance is based on measurements and projections using standard IBM
benchmarks in a controlled environment. The actual throughput or performance
that any user will experience will vary depending upon many factors, including
considerations such as the amount of multiprogramming in the user’s job stream,
the I/O configuration, the storage configuration, and the workload processed.
Therefore, no assurance can be given that an individual user will achieve results
similar to those stated here.

1

IBM Software Group

© 2013 IBM Corporation

Evolving exposure of business function

Service Exposure
(enterprise)

Low Level APIs
(platform/package)

Application Integration
(application)

Service/API Exposure
(external known

consumers)

External API Exposure
(public)

Future?
Let’s first take a brief look at how
enterprises progressed through

basic integration to service
oriented architecture (SOA)

What was SOA originally

!   Inwardly focused, based on
understanding of core
business capabilities.

!   Often driven from business
top down exercises such as
Component Business
Modelling.

!   Focused on improving core
business processes –
organising/streamlining
people/teams processes,
audit tracking, status
tracking, MI.

3

SOA Reference Architecture
https://collaboration.opengroup.org/projects/soa-ref-arch

controlling

executing

directing Business
Planning

Business Unit
Tracking Sales

Management
Credit

Assessment
Reconciliation

Compliance

Staff Appraisals

Relationship
Management

Sector
Management

Product
Management

Production
Administration

Product
Fulfillment Sales

Marketing
Campaigns

Product
Directory

Credit
Administration

Customer
Accounts

General
Ledger

Document
Management

Customer
Dialogue

Contact Routing

Staff
Administration

Business
Administration

New Business
Development

Relationship
Management Servicing & Sales Product

Fulfillment
Financial Control
and Accounting

Sector Planning Portfolio
Planning

Account
Planning Sales Planning Fulfillment

Planning

Fulfillment
Planning

Component Business Map

IBM Software Group

© 2013 IBM Corporation

Silo Services
Composite

Services
Virtualized
Services

Dynamically
Re-Configurable

Services Componentized Integrated

Level 1 Level 4 Level 5 Level 6 Level 7 Level 3 Level 2

Applications

Methods

Organization

Infrastructure

Architecture

Business View

Modules Services
Process

Integration via
Services

Dynamic
Application
Assembly

Components Objects

Structured
Analysis &

Design

Service
Oriented
Modeling

Service
Oriented
Modeling

Grammar
Oriented
Modeling

Component
Based

Development

Object
Oriented
Modeling

Ad hoc IT
Governance

Emerging SOA
Governance

SOA and IT
Governance
Alignment

SOA and IT
Governance
Alignment

Ad hoc IT
Governance

Ad hoc IT
Governance

SOA and IT
Governance
Alignment

Service
Oriented
Modeling

Process
Integration

via Services

Platform
Specific

Platform
 Specific

Platform
Neutral

Dynamic
 Sense &
Respond

Platform
 Specific

Platform
Specific

Monolithic
Architecture

Emerging
SOA Grid Enabled SOA

Dynamically Re-
Configurable
Architecture

Component
Architecture

Layered
Architecture SOA

Platform
 Specific

Function
Oriented

Service
Oriented

Service
Oriented

Service
Oriented

Function
Oriented

Function
Oriented

Service
Oriented

Open Service Integration Maturity Model (OSIMM)

https://collaboration.opengroup.org/projects/osimm

Primary focus of this presentation

IBM Software Group

© 2013 IBM Corporation

E
nt

er
pr

is
e

B
ou

nd
ar

y
D

M
Z

Web “1.0” – From Hub and Spoke to SOA

Browser

Web Application
Server

HTTP Server

Operational
Systems
(Applications
& Data)

Integration
Hub Integration

Application Database

Adapter

Service Exposure

Integration
Hub

Service
Exposure

HTML
HTTP

HTML
HTTP

JDBC
SOAP
HTTP

Hub and spoke
(SIMM 3)

Service oriented architecture
(SIMM 4)

Point to point
(SIMM 2)

SOA Firewall

Known
consumers

SOAP
HTTP

Adapter
Adapter Adapter Adapter Adapter

IBM Software Group

© 2013 IBM Corporation

Service Exposure
(internal)

Integration

The role of the Service Exposure Gateway

Operational Systems
(Applications & Data)

Consumers

Integration Hub

Service Exposure Gateway

Adapter Adapter

Service
Registry

Design time

Runtime
Service Exposure

Traffic Management
Security

Virtualisation
Visibility

Common challenges with early SOA maturity
!   Issues with SOAP and XML

•  Multiple different flavors of SOAP. Very late consolidation on Document/literal wrapped
WSDL over “RPC/encoded”, “RPC/literal” and “Document/literal”

•  No first class representation of action/verb/method. Even now you have to parse to the
SOAP body element name.

•  XML provides too many ways to represent the same thing. Attributes vs. Elements,
representations of namespace, arrays etc.

•  XML had no native language bindings. DOM trees are ugly to navigate.
•  XML Schema took the eXtensible out of XML. Rigidity of complex data typing combined

with early XML parser inflexibility made versioning complex quickly.
!   Organizational issues

•  Most services were created by projects. Services were only good for first use.
•  Funding for SOA was hard to come by, but because of immaturity SOA was expensive.
•  Metrics for re-use in the wrong place. Most re-use was happening not at the service

exposure level, but in the underlying integration layer.
•  Services were often just a façade on a set of still mis-aligned components. No re-

engineering budget.
!   Other technical issues

•  A whole new realm of security mechanisms to support, with little if any prior history. E.g.
WS-Security, SAML.

•  Tools were immature for common needs e.g. mapping, logging/auditing/monitoring
frameworks.

7

However, the tools and techniques may have been immature, but the
fundamental premise of SOA, to make functions and data available in a re-
usable way, is still essential today.

IBM Software Group

© 2013 IBM Corporation

Evolving exposure of business function

Service Exposure
(enterprise)

Low Level APIs
(platform/package)

Application Integration
(application)

Service/API Exposure
(external known

consumers)

External API Exposure
(public)

Future?

Now we need to
understand the

motivations behind
“RESTful” APIs

IBM Software Group

© 2013 IBM Corporation

E
nt

er
pr

is
e

B
ou

nd
ar

y
D

M
Z

Web 2.0 interaction patterns
Introducing HTTP/JSON interactions

Service
Exposure
(Internal)

Operational
Systems
(Applications
& Data)

Service
Exposure

Consumers
(internal)

Application
Server

Integration
Hub Integration

HTTP Server

Consumers
(external)

HTML/HTTP JSON/HTTP
(via Ajax)

HTML/HTTP

SOAP/HTTP

JSON/HTTP

Course grained
enterprise scoped
“web service” exposure

Fine grained
application scoped
“RESTful API” exposure

“Web 1.0” pages in
browser

Web 2.0 (rich)
browser application

Characterising the interface

Requester Provider

Interface Characteristics
Integrity
Security
Reliability
Error handling

Data
Technical interface
Interaction type
Performance

Capturing integration complexity
 http://www.ibm.com/developerworks/websphere/techjournal/1112_clark/1112_clark.html

10

IBM Software Group

© 2013 IBM Corporation

Protocol comparison
SOAP web services “REST” APIs

Protocol SOAP HTTP
Transport HTTP typically

(but JMS/MQ common)
TCP/IP

Data format XML schema JSON or XML, or request
URL parameters

Interface
definition

WSDL file By inspection/
documentation

Action/operation Inferred by XML element
name

URL and HTTP verb

Response types XML and MIME
attachments

JSON, XML, and other
MIME types

Note: “REST” is NOT a formalised protocol in the same way that SOAP is.
More on this later in the presentation.

What is a RESTful interaction?
(REST = Representational State Transfer)

!   A component interaction style that ensures independence,
performance, scalability and consumability.

!   Some key constraints of a RESTful architecture
•  Uniform Interface (consumability, independence)
–  Identification of resources via unique references
–  Manipulation via these unique references
–  Self-descriptive messages

•  Cachable (performance, independence)
•  Stateless (scalability, independence)

!   HTTP 1.0/1.1 were designed using RESTful principles
!   Rejuvenated recently for “Web APIs” typically using HTTP/JSON or

HTTP/XML and using the core HTTP verbs for “(S)CRUD”

For a more formal definition of REST see here:
http://www.ics.uci.edu/~taylor/documents/2002-REST-TOIT.pdf

IBM Software Group

© 2013 IBM Corporation

“RESTful” interfaces – important observations

§ There is no official standard for RESTful interactions
– However, a set of style guidelines around how to write interfaces that play

to the strengths of HTTP’s RESTful nature have reached communal
consensus.

– These principles take advantage of HTTP’s existing infrastructure for
security, caching, resource identifiers (URI/URL), standard verbs (GET,
PUT, POST, DELETE), media type negotiations etc.

– The JSON data format is popular for payloads on RESTful interfaces due
to its simplicity and native javascript support, but XML is also common.

§  “SOAP” is not well suited to RESTful interfaces
– SOAP circumvents many of the core RESTful properties of HTTP. It plays

purely within the payload so its standard cannot reach into the transport
(URIs, HTTP headers, authentication, mime types for example).

13 18/08/2014

IBM Software Group

© 2013 IBM Corporation

Data Format differences
XML
First class namespaces but multiple representations
Rich data types, but requires a “schema”
Validation, but requires a “schema”
Code heavy to navigate DOM
Most bindings required schema

JSON
Native parsing in Javascript
Single way to represent data values
No “schema” to define the structure
Slimmer (“low fat xml”)
Unburdened by namespaces
First class representation of numbers vs text
First class representation of arrays

<?xml version="1.0" encoding="UTF-8"?>!
<order orderid=”123456” xmlns:xsi=!
"http://www.w3.org/2001/XMLSchema-instance"!
xsi:noNamespaceSchemaLocation=”order.xsd">!
 <orderperson>Joe Bloggs</orderperson>!
 <deliveryaddress>!
 <name>Fred Smith</name>!
 <address>High Street, London</address>!
 </deliveryaddress>!
 <itemlist>!
 <item>!
 <title>Romeo and Juliet</title>!
 <quantity>1</quantity>!
 <price>9.99</price>!
 </item>!
 <item>!
 <title>Pride and Prejudice</title>!
 <quantity>1</quantity>!
 <price>10.99</price>!
 </item>!
 </itemlist>!
</order>!

{!
 “orderid” : ”123456”,!
 “orderperson” : “Joe Bloggs”,!
 “deliveryaddress” : {!
 “name” : “Fred Smith”,!
 “address” : “High Street, London”,!
 },!
 “itemList” : [!
 {!
 “title” : “Romeo and Juliet”,!
 “quantity” : 1,!
 “price” : 9.99!
 }!
 {!
 “title” : “Pride and Prejudice”,!
 “quantity” : 1,!
 “price” : 10.99!
 }!
]!
}!

Header required
Attribute or
element for

values?

Arrays implied

Numbers are text

All tags duplicate text

Explicit arrays

Number representation

15 18/08/2014 Change Management

“Non-extensible” eXstensible Markup Language
The issues with response data structure changes
<response>
 <order>
 <reference>123<reference>
 <quantity>2</quantity>
 <productId>KI987</productId>
 </order>
</response>

<response>
 <order>
 <reference>123</reference>
 <quantity>2</quantity>
 <productId>KI987</productId>
 <status>SHIPPED</status>
 </order>
</response>

!  Formally not backward compatible as consumer is passed unexpected data not
present in their schema
However…

•  Most common interface change due to incremental evolution of interfaces
•  Treating as non-backwardly compatible is very expensive in refactoring/versioning
•  Many (but unfortunately not all) consumers can accommodate it without any refactoring,

but can you be sure?

!  REST/JSON interfaces do not suffer from this problem.
•  JSON parsing requires no schema
•  The data is completely self defining
•  Consumers simply read the data they need
•  Can still get tripped up with deep data comparisons etc.

IBM Software Group

© 2013 IBM Corporation

Protocol – Examples
SOAP/HTTP

“REST”/HTTP

POST /ordermanagement HTTP/1.1!
Host: www.example.org!
Content-Type: application/soap+xml; charset=utf-8!
Content-Length: nnn!
!
<?xml version="1.0"?>!
<soap:Envelope!
xmlns:soap="http://…"!
soap:encodingStyle="http://…”>!
<soapenv:Header>!
 <wsse:Security soapenv:mustUnderstand="1"!
 xmlns:wsse="http://...xsd">!
 <wsse:UsernameToken>!
 <wsse:Username>John</wsse:Username>!
 <wsse:Password !
 Type="http://…">Doe</wsse:Password>!
 </wsse:UsernameToken>!
 </wsse:Security>!
</soapenv:Header>!
<soap:Body xmlns:m="http://www.example.org/
ordermanagement">!
 <m:AddOrderItem>!
 <m:order orderid=”123456”!
 <m:item>!
 <m:title>Romeo and Juliet</m:title>!
 <m:note>Special Edition</m:note>!
 <m:quantity>1</m:quantity>!
 <m:price>9.99</m:price>!
 </m:item>!
 </m:order>!
 </m:AddOrderItem>!
</soap:Body>!
</soap:Envelope>!

With XML

POST /orders/123456/item HTTP/1.1!
Host: www.example.org!
Content-Type: application/soap+xml; charset=utf-8!
Content-Length: nnn!
Authorization: …!
<?xml version="1.0"?>!
<m:item !
 xmlns:m="http://www.example.org/ordermanagement">!
 <m:title>Romeo and Juliet</m:title>!
 <m:note>Special Edition</m:note>!
 <m:quantity>1</m:quantity>!
 <m:price>9.99</m:price>!
</m:item>!

With JSON
!
POST /orders/123456/item HTTP/1.1!
Host: www.example.org!
Content-Type: application/json; charset=utf-8!
Content-Length: nnn!
Authorization: …!
!
{!
 “title” : “Romeo and Juliet”,!
 “note” : “Special Edition”,!
 “quantity : 1,!
 “price” : 9.99!
}!

A

A

A

B C D

B C D

E

E

B C

D
E

IBM Software Group

© 2013 IBM Corporation

Protocol – Pros/cons
SOAP/HTTP

“REST”/HTTP

•  Pros
•  Enables object oriented verb style
•  Support for transactionality
•  Many standards for security
•  Can use any transport, even

asynchronous messaging.
•  Flexible routing patterns
•  Can be used over any transport

•  Cons
•  Complex to get simple things done

•  Minimum structure for a request is
full SOAP envelope

•  Forcibly XML data format
•  Less natural to parse and navigate

in browser side javascript
•  Transport agnostic

•  Cannot benefit from inherent
capabilities of the underlying
transport

•  Pros
•  Simple things are simple
•  Fully leverages existing mature

HTTP infrastructure – URLs,
security, verbs, caching etc.

•  Can use any data format, though
JSON and XML most common.

•  Provides unique references to
resources.

•  Simplifies design of the service
model to (S)CRUD

•  Cons
•  Bound to HTTP. Harder to use

over other transports.
•  Can be chatty – multiple requests

to achieve one action
•  Highly “functional” operations can

be hard to represent

But ultimately, the protocol is only a small part of the story!

IBM Software Group

© 2013 IBM Corporation

Evolving exposure of business function

Service Exposure
(enterprise)

Low Level APIs
(platform/package)

Application Integration
(application)

Service/API Exposure
(external known

consumers)

External API Exposure
(public)

Future?
What happens when
we expose publically

as “Web APIs”

IBM Software Group

© 2013 IBM Corporation

E
nt

er
pr

is
e

B
ou

nd
ar

y
D

M
Z

E
nt

er
pr

is
e

B
ou

nd
ar

y
D

M
Z

Mobile device side “app” interaction styles
Formalising of API exposure

Service
Exposure
(Internal)

Operational
Systems
(Applications
& Data)

Service
Exposure

Consumers
(internal)

Mobile
Application

Application
Server

Service/API
Exposure

Integration
Hub Integration

HTTP
Server

Service/API
Exposure

Consumers
(external)

SOA

IBM Software Group

© 2013 IBM Corporation

Application Programming Interface (API)
An old term re-invented

§ API
§ A well defined interface to enable one component to talk to another,

programmatically, without understanding it’s implementation.
§ Examples would include

§  Database drivers
–  provide an API that allows programming languages with a mechanism to talk to

databases without having to understand the details of how the communication is done
(e.g. how JDBC actually works).

§  Enterprise Java Beans – Home/Remote interfaces
–  provide remove interfaces that hide the complexities of the underlying RMI requests to

enable you to call java applications located in another server.

§  “Web APIs”
§ The new term currently used to describe HTTP/JSON, HTTP/XML APIs

that are often publicly accessible.
§ HTTP/SOAP could be used to expose a web API, but for reason we will

discuss later, typically not the preferred method.

20 18/08/2014

IBM Software Group

© 2013 IBM Corporation

E
nt

er
pr

is
e

B
ou

nd
ar

y
D

M
Z

Different between the internal and external service consumer

Service
Exposure
(external)

Service Exposure
(internal)

Operational Systems
(Applications & Data)

Service Exposure
(enterprise)

Service/API Exposure
(external)

Consumers
(internal)

There may be only a handful
of well understood internal

consumer applications

…and there could
be hundreds of
“experimenters”

There may 10s of external
consumer applications

IBM Software Group

© 2013 IBM Corporation

Architectural style differences
“Web Services”

§  Coarse grained

§  Function oriented

§  Optionally transactional

§  Numerous maturing security options

§  Sophisticated data format

§  Typically SOAP/HTTP

§  Best suited to

–  Internal (within enterprise)

– System to system

– E.g. Business process automation

“Web APIs”
§  Fine grained/chatty

§  Resource/data oriented

§  Non-transactional

§  Limited but mature security options

§  Simple lightweight data format

§  Typically “REST” – e.g. HTTP/JSON

§  Best suited to

–  Internal or external

– User interface to system

– E.g. Mobile app to multiple APIs

Note: “Web Service” and “Web API” are not formal terms with agreed definitions.
They are just two of the most common terms used to explain styles in use today.

IBM Software Group

© 2013 IBM Corporation

Service Exposure
E

nt
er

pr
is

e

B
ou

nd
ar

y
D

M
Z

Additional requirements for external exposure
 - Introducing “API management”

Service Exposure – extended for external

Traffic Management

Security

Virtualisation

Visibility

Service
Exposure
(external)

Service
Exposure
(internal)

Operational
Systems

Service Exposure
(enterprise)

Service/API
Exposure
(external)

Partner Management

Accounting

Self administration

“Internet” auth

Threat management

Service
Registry

API
Catalogue

Core conceptual differences with Web APIs
!   Your audience is different

•  Web APIs offer radically new business models. New ways of making money
takes broad innovation. Your audience are now “app developers”
–  No longer just inward looking for innovation. We are now crowd sourcing new business

ideas externally.
•  The app market is an loosely controlled sand pit.

–  Recall the pervasiveness of “unofficial” office applications?
•  Web APIs are the public persona of your organisation

–  For some, not having a Web API is like not having a web page 10 years ago.
•  Did we know where Web 1.0 was going?

–  Initially brochure-ware. Suddenly eCommerce and monetisation of the web.

!   Web APIs “look and feel” different
•  Web APIs cannot make assumptions about the types of applications that will be

created.
•  You cannot guess the usage of situational applications and mobile applications.
•  The API is “resource” based, meaning it is closely aligned with the data model.

!   Web APIs are a “product” and must be treated like one
•  Your Web APIs are fighting for survival alongside your competitors Web APIs.
•  API Management Portal needs to be attractive
•  They simply make the data as accessible and the interface as consumable as

possible.

IBM Software Group

© 2013 IBM Corporation

Dispelling some myths about Web APIs

§ Web APIs are always HTTP/JSON
– Many are HTTP/JSON, but there are a good proportion that are HTTP/XML.

– Note that one of the benefits of using raw HTTP interactions is that you can
use the in built mime type support. A response could even be pdf!

§ Web APIs are always RESTful
– Most web APIs comply with some of the tenets of RESTful interfaces, such as

being stateless. However, desirable though RESTfulness may be, few employ
all RESTful recommendations.

– Some Web APIs derive from older HTTP/SOAP web services, and are little
more than a translation of that into HTTP/JSON. Again, REST is a paradigm,
HTTP/JSON is just a protocol choice – it depends how you use it

§ Web APIs don’t use SOAP
– Using SOAP/XML doesn’t disqualify an interface from being classed as a

Web API. It might however suggest that it is less RESTful.

Thought experiments
!   Consider Web API first?

•  Why expose APIs internally at all. If they're useful, they're useful externally too
(maybe over VPN)

!   What is a “test environment” for an API based application?

•  How will we provide test environments for our API consumers. Are we really talking
about massive multi-tenancy rather than shared systems.

•  How would you provide data into those environments.

!   Do Web APIs simplify versioning?
•  Web APIs still need to be governed – they’re a product remember…
•  Neither SOAP, or REST/JSON have first class versioning mechanisms
•  REST/JSON tolerates changes in responses slightly better. Everything else is still

hard!

!   How do we manage reliability and data integrity over Web APIs?
•  Do we need to design differently to ensure web interactions over non-transactional

protocols result in safe state changes? Do we need to introduce idempotence?
•  More fine grained, so may have multiple updates.

!   How much do we expose?
•  Many SOAs initiatives stalled during over-enthusiastic top down analysis of the

organization.
•  You’re unlikely expose your entire business over APIs. Focus in on a business

domain or value stream.

IBM Software Group

© 2013 IBM Corporation

Beware!
“Web API” actually has two completely different definitions

§  Client side (an API within web browsers)

– This is NOT what we are talking about today!
– Browser side programming interfaces, typically using javascript libraries, to

enable end-user interfaces to interact more powerfully with their environment.
– For example to create safer more sandboxed browser side applications

(Google “Native Client”), or to enable browser based applications to access
device capabilities without the need for a native wrapper (Mozilla WebAPI).

§  Server side (an API used to expose services on the web)
– This IS what we are referring to in this presentation!
– Programming interfaces used to expose functionality in back end operational

systems over the internet by offering lightweight “RESTful” HTTP/JSON or
HTTP/XML interfaces.

– Google, Amazon, Facebook, Twitter all provide Web APIs to enable
applications to easily access their data from mobile and other web appliations.
More examples on http://www.programmableweb.com

IBM Software Group

© 2013 IBM Corporation

Extended reference architecture
showing some relevant IBM products

Service Exposure
(internal)

Operational Systems
(Applications & Data)

Integration

Consumers
(internal)

Business Process
Orchestration

IBM
Business Process Manager

IBM Integration Bus

In-house

Service
Exposure
(external)

Consumers
(external)

IBM API
Management

IBM DataPower

(IBM DataPower?/API Mgmt?)
WebSphere

Service
Registry &
Repository

IBM Software Group

© 2013 IBM Corporation

Evolving exposure of business function

Service Exposure
(enterprise)

Low Level APIs
(platform/package)

Application Integration
(application)

Service/API Exposure
(external known

consumers)

External API Exposure
(public)

“Event Interaction”?
(internet based)

What new models of
interaction are

currently maturing?

IBM Software Group

© 2013 IBM Corporation

E
nt

er
pr

is
e

B
ou

nd
ar

y

Mobile device event interactions – Publish/Subscribe

Service
Exposure
(Internal)

Operational
Systems
(Applications
& Data)

Service/API
Exposure

Consumers
(internal)

Mobile
Application

Application
Server

Integration
Hub Integration

Message
Server

Consumers
(external)

2. Publish

3. Notify

1. Subscribe

Events, messages, notifications
The re-invention of asynchronous interaction!
!   New forces driving resurgence of asynchronous interaction

•  Internet of Things (IoT), mass notification requirements, disconnectable mobile
apps, Event Driven Architecture (EDA)

!   Asynchronous patterns are well established
•  e.g. Messaging, store/forward publish/subscribe etc.

!   Messaging technologies are mature
•  e.g. WebSphere MQ, IBM Integration Bus (was Broker)

!   Driving simplicity and efficiency
•  Why request information, when you could just be given it (notification)
•  Why send information to people who don’t need it (publish/subscribe)
•  Why should a system have to be present/available when you want to

communicate with it (store/forward)

!   Messaging and notification patterns are now baked into mobile application
infrastructure. Unfortunately they vary by platform and even by app, but standards
are starting to emerge.

•  Tools such as IBM Worklight provide agnosticism across these platforms whilst
the standards settle.

Note: Ajax although terms “asynchronous” is actually fully thread blocking from the
browser down. The sense in which it is asynchronous that requests are not done on
the users UI thread.

31

IBM Software Group

© 2013 IBM Corporation

Evolving exposure of business function

Service Exposure
(enterprise)

Low Level APIs
(platform/package)

Application Integration
(application)

Service/API Exposure
(external known

consumers)

External API Exposure
(public)

“Event Interaction”?
(internet based)

Evolution does NOT mean the
older techniques become

redundant. Typically they are
the bedrock that make the

newer forms possible

What did SOA ever do for us?
SOA initiatives to date have provided:
!  Rationalization of components around business functionality
!  Standardized vocabularies (data models, service models)
!  Simplified data models and functions
!  Better documentation of available interfaces
!  Support for synchronous real-time interaction
!  Feedback from consumers on ease of use
!  Innovation around what can be exposed and how it can be used
!  Improvements in integration tooling, and infrastructure. e.g.

•  E.g. Adapters, meta-data discovery, data formatting, graphical
data mapping, industry data models, registries, API
management, gateway appliances,

33

SOA was simply about good architectural principles
around a layered architecture. Web APIs are just an
example of one of the ways an SOA can mature.

Questions?

We Value Your Feedback

!   Don’t forget to submit your Impact session and speaker
feedback! Your feedback is very important to us – we use it to
continually improve the conference.

!   Use the Conference Mobile App or the online Agenda Builder to
quickly submit your survey

•  Navigate to “Surveys” to see a view of surveys for sessions
you’ve attended

35

Thank You

Legal Disclaimer

•  © IBM Corporation 2014. All Rights Reserved.
•  The information contained in this publication is provided for informational purposes only. While efforts were made to verify the completeness and accuracy of the information contained in

this publication, it is provided AS IS without warranty of any kind, express or implied. In addition, this information is based on IBM’s current product plans and strategy, which are subject
to change by IBM without notice. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, this publication or any other materials. Nothing
contained in this publication is intended to, nor shall have the effect of, creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and
conditions of the applicable license agreement governing the use of IBM software.

•  References in this presentation to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates. Product release dates and/or
capabilities referenced in this presentation may change at any time at IBM’s sole discretion based on market opportunities or other factors, and are not intended to be a commitment to
future product or feature availability in any way. Nothing contained in these materials is intended to, nor shall have the effect of, stating or implying that any activities undertaken by you
will result in any specific sales, revenue growth or other results.

•  If the text contains performance statistics or references to benchmarks, insert the following language; otherwise delete:
Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput or performance that any user will
experience will vary depending upon many factors, including considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage
configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve results similar to those stated here.

•  If the text includes any customer examples, please confirm we have prior written approval from such customer and insert the following language; otherwise delete:
All customer examples described are presented as illustrations of how those customers have used IBM products and the results they may have achieved. Actual environmental costs
and performance characteristics may vary by customer.

•  Please review text for proper trademark attribution of IBM products. At first use, each product name must be the full name and include appropriate trademark symbols (e.g., IBM Lotus®
Sametime® Unyte™). Subsequent references can drop “IBM” but should include the proper branding (e.g., Lotus Sametime Gateway, or WebSphere Application Server). Please refer
to http://www.ibm.com/legal/copytrade.shtml for guidance on which trademarks require the ® or ™ symbol. Do not use abbreviations for IBM product names in your presentation. All
product names must be used as adjectives rather than nouns. Please list all of the trademarks that you use in your presentation as follows; delete any not included in your presentation.
IBM, the IBM logo, Lotus, Lotus Notes, Notes, Domino, Quickr, Sametime, WebSphere, UC2, PartnerWorld and Lotusphere are trademarks of International Business Machines
Corporation in the United States, other countries, or both. Unyte is a trademark of WebDialogs, Inc., in the United States, other countries, or both.

•  If you reference Adobe® in the text, please mark the first use and include the following; otherwise delete:
Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

•  If you reference Java™ in the text, please mark the first use and include the following; otherwise delete:
Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

•  If you reference Microsoft® and/or Windows® in the text, please mark the first use and include the following, as applicable; otherwise delete:
Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or both.

•  If you reference Intel® and/or any of the following Intel products in the text, please mark the first use and include those that you use as follows; otherwise delete:
Intel, Intel Centrino, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and
other countries.

•  If you reference UNIX® in the text, please mark the first use and include the following; otherwise delete:
UNIX is a registered trademark of The Open Group in the United States and other countries.

•  If you reference Linux® in your presentation, please mark the first use and include the following; otherwise delete:
Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both. Other company, product, or service names may be trademarks or service marks of others.

•  If the text/graphics include screenshots, no actual IBM employee names may be used (even your own), if your screenshots include fictitious company names (e.g., Renovations, Zeta
Bank, Acme) please update and insert the following; otherwise delete: All references to [insert fictitious company name] refer to a fictitious company and are used for illustration
purposes only.

37

Interface Characteristics
Data

Principal data objects
Operation/function
Read or change
Request/response objects

Technical Interface
Transport
Protocol
Data format

Interaction type
Request-response or fire-forget
Thread-blocking or asynchronous
Batch or individual

Performance
Response times
Throughput
Volumes
Concurrency
Message size

Integrity
Validation
Transactionality
Statefullness
Event Sequence
Idempotence

Security
Identity/Authentication
Authorisation
Data Ownership
Privacy

Reliability
Availability
Delivery assurance

Error Handling
Error Management capabilities
Known exception conditions

http://www.ibm.com/developerworks/websphere/techjournal/1112_clark/1112_clark.html
38

IBM Software Group

© 2013 IBM Corporation

What are the fundamental questions that drive design

§ Who owns it?
– Who creates and prioritises the requirements?

§ How long does it last?
– What is the runtime lifespan of its instances?

§ How often does it change?
– How frequently do its requirements change?

