
© 2009 IBM Corporation

Leveraging The Web Services Interface Of
The Communications Enabled Applications
Feature Pack

Katherine Sanders – Software Engineer, IBM Hursley
18 March 2010

2 © 2009 IBM Corporation

Agenda

■ CEA Feature Pack overview

■ Business Scenarios

■ Interfaces to the communications services

■ Web services overview

■ Sample Web services application using Rational Application Developer

■ External Web services support

■ Summary

■ Further information / Questions?

Leveraging The Web Services Interface Of The Communications Enabled Applications Feature Pack

3 © 2009 IBM Corporation

IBM® WebSphere® Application Server V7 Feature Pack for
Communications Enabled Applications (CEA feature pack)

“A communications enabled application (CEA) is a set of information technology (IT)
components and communication technology components that are integrated using a
particular service-oriented architecture (SOA) to increase the productivity of an
organization and/or improve the quality of users' experiences.” - Wikipedia

■ Free extension available to WebSphere Application Server V7.0 customers

■ Simplifies the addition of communications capabilities to new and existing applications
– Developers do not need to know about the underlying communications protocols
– No client-side installation required

■ Uses an SOA and JavaTM based programming model

■ Improves customer support experience through new methods of interaction

■ Lowers costs through reuse of existing Java skills, applications and telephony
infrastructure

Leveraging The Web Services Interface Of The Communications Enabled Applications Feature Pack

4 © 2009 IBM Corporation

CEA feature pack version 1.0

■ Shipped on top of WebSphere Application Server V7.0.0.5

■ Enables multi-modal communications capabilities such as:
– Click-to-call – customer requests a call from a company by entering their phone number on

the company's website
– Co-browsing – two Web users to share the same browsing session. One user controls the

session; the other user has no control, but can view the activity of the other user.
– Two-way synchronised forms – HTML forms in which two people can collaboratively edit

and validate fields. Both parties can see the same form. The fields in the form change in
response to input provided by either person.

■ Utilises diverse developer skills with Web services and REST services-based APIs and Web
2.0 widgets

■ Provides access to standards-based telephony infrastructure

■ Supports the latest Session Initiation Protocol (SIP) Servlet 1.1 standard (JSR 289)

■ Includes a unit test environment to prototype and test applications without the need to access
the corporate telephony network

Leveraging The Web Services Interface Of The Communications Enabled Applications Feature Pack

5 © 2009 IBM Corporation

CEA feature pack version 1.0.0.1

■ Shipped on top of WebSphere Application Server V7.0.0.7

■ Adds clustering and failover support for Web collaboration and telephony services on
distributed platforms

■ Makes Web collaboration URIs more secure with a nonce to prevent session snooping

■ Provides iWidget support for CEA widgets
– iWidget is an IBM specification that defines a way to wrap Web content so that it can

participate in a mashup environment.

■ Widgets support new Dojo level 1.3.2 (previously 1.3.1)
– This means base Dojo widgets will now support:

• Internet Explorer V8
• Firefox 3.5
• Google Chrome 2

Leveraging The Web Services Interface Of The Communications Enabled Applications Feature Pack

6 © 2009 IBM Corporation

Business scenario 1: Click-to-call with co-browsing
Leveraging The Web Services Interface Of The Communications Enabled Applications Feature Pack

Customer browsing a
commercial website has

a question for a
customer service

representative (CSR).

Customer types their
phone number into the
Web page to request a
call be initiated with the

CSR (click-to-call).

A CSR is logged in
and waiting for call
notifications at the

company.

The CSR can also start a co-browsing session with the customer.
This allows the customer to view the pages the CSR is highlighting,

including items on the page, such as price or model number.

When the customer requests
a call, the CSR is connected

to the customer through
voice over IP (VOIP).

■ Registered customers, with preferences, might have additional features available.
– E.g. The CSR could check the inventory of their preferred store location for the item
– E.g. The customer can view the page in a different language than the CSR.

7 © 2009 IBM Corporation

Business scenario 2: Shopping with a friend

■ Two-way collaboration is enabled, allowing each person to show pages to the other and
highlighting items of interest.

■ Each user, however, is able to maintain a separate session with their own shopping cart
and preferences.

Leveraging The Web Services Interface Of The Communications Enabled Applications Feature Pack

In an online co-
shopping scenario,
two customers are

talking over the phone
and shopping the
same website.

They can co-shop by
sharing their browser
sessions with each

other (peer-to-peer co-
browsing).

8 © 2009 IBM Corporation

Business scenario 3: Tracking and reporting call statistics
Leveraging The Web Services Interface Of The Communications Enabled Applications Feature Pack

A company wants to
track the number of calls

they receive in a day.

They have a business
application that uses a
Web service client to
interact with the CEA

Web service.

The application
registers to be

notified of
incoming calls
using the Web
service client.

When calls are received, the telephone
system notifies the CEA Web service,

which sends a notification to the
business application.

The business application receives the
notification and increments a counter.

The data that the application
gathers in its counter is logged

and stored, to be used in a
report that is generated at the

end of the business day.

9 © 2009 IBM Corporation

Interfaces to the communications services – REST

■ Representational State Transfer (REST) is a network architecture that defines how
resources on the Internet are accessed.

■ Calls are similar to standard HTTP requests, except that they have a specific format that is
recognised by the REST interface

■ The CEA Web service has a servlet that is constantly listening for requests.

■ The servlet parses each incoming request and returns a response to it using JSON or XML

■ The REST APIs allow you to perform the following operations:
– Make/End a call
– Get call status
– Register/Unregister for call notification
– Get call notification information
– Enable collaboration
– Get collaboration status
– Start/End a collaboration session with a peer
– Send data to the collaboration peer
– Retrieve event data (call status, collaboration status, collaboration data)

Leveraging The Web Services Interface Of The Communications Enabled Applications Feature Pack

10 © 2009 IBM Corporation

Interfaces to the communications services – widgets

■ Dojo widgets are pre-packaged components of JavaScript and HTML code that add
interactive features that work across platforms and browsers.

■ The CEA feature pack comes with three ready-to-integrate widgets, and two extendable
widgets that developers can customise to handle more advanced tasks.

■ These widgets provide the following capabilities in Web applications:
– Request phone calls (click-to-call)
– Receive call notifications
– Collaborate and Co-browse
– Create and configure two-way forms

■ The widgets can be embedded into any Web page by adding a JavaScript reference to the
CEA Dojo toolkit and adding the tag definitions to the HTML files.

– Just 2 imports and 1 line of HTML to add click-to-call on any Web page

■ The widgets communicate with the back-end service using the REST APIs.

■ The Plants By WebSphere sample application has been extended to include the click-to-
call and call notification widgets for the feature pack as an example

Leveraging The Web Services Interface Of The Communications Enabled Applications Feature Pack

11 © 2009 IBM Corporation

Interfaces to the communications services – JSR 289

■ The SIP Servlet Specification 1.1 (JSR 289) provides the Java API standards for Session
Initiation Protocol (SIP)

■ SIP is a signalling protocol used for creating, modifying, and terminating IP communication
sessions such as telephony applications.

■ SIP is not limited to voice communication and can mediate any kind of communication
session, such as multimedia.

■ SIP's rich media capabilities make Communications Enabled Applications (CEA) possible
and extensible.

■ The JSR 289 interface is for telephony applications that prefer to use the telephony APIs
to build communication applications.

Leveraging The Web Services Interface Of The Communications Enabled Applications Feature Pack

12 © 2009 IBM Corporation

Interfaces to the communications services – Web services

■ Web service calls can be made by business applications to access the communication
system and:

– Open a telephony session
– Make a call
– End a call
– Close a telephony session
– Get asynchronous call status updates using WS-Notification

Leveraging The Web Services Interface Of The Communications Enabled Applications Feature Pack

13 © 2009 IBM Corporation

Web services overview

■ Web services enable interoperable machine-to-machine interaction over a network

■ Typically Web service applications:
– Communicate using XML messages that follow the SOAP standard over HTTP
– Publish a machine-readable description of the operations offered by the service written in

the Web Services Description Language (WSDL)

■ Applications can be written in a variety of languages and environments

■ The Java API for XML Web Services (JAX-WS) is a Java programming language API for
creating Web services

– Uses annotations to simplify development and deployment
– Clients create a local proxy to represent a service, then invoke methods on the proxy
– The JAX-WS run time converts API calls and matching responses to and from SOAP

messages to shield the developer from that complexity

■ The WS-Notification standard provides a standards-based framework through which Web
service applications can participate in publish and subscribe messaging patterns

Leveraging The Web Services Interface Of The Communications Enabled Applications Feature Pack

14 © 2009 IBM Corporation

Web services tooling

■ JAX-WS provides two main command line tools for developing Web services:
– wsimport

• Top-down development
• Creates Java beans, service client, service endpoint interface, and wrappers from a

provided WSDL
– wsgen

• Bottom-up development
• Creates a WSDL document from Java code with the proper Web service annotations

■ The Web services tooling in IBM Rational® Application Developer builds on the wsimport and
wsgen commands and allows either a service client or a skeleton bean to be created using a
wizard.

Leveraging The Web Services Interface Of The Communications Enabled Applications Feature Pack

15 © 2009 IBM Corporation

CEA feature pack WSDL documents

■ ControllerService.wsdl
– Contains the description of the operations offered by the CEA Web service
– Used to generate the Web services client code needed to communicate with the CEA

Web service
– Generated Java classes include OpenSession, CloseSession, MakeCall, and EndCall.
– Applications call the methods on the generated classes to manage telephone calls

■ CeaNotificationConsumer.wsdl
– Describes a WS-Notification consumer service
– Used to generate a service implementation class
– Implement the notify() method in that class to receive and process notification messages

about changes to the call status

Leveraging The Web Services Interface Of The Communications Enabled Applications Feature Pack

16 © 2009 IBM Corporation

Web services call flow

1 The business application sends a call
request to the CEA Web service

2 The WebSphere Application Server Web
container routes the request to the CEA
system application

3 The CEA system application sends the
request to the Internet Protocol (IP) Private
Branch Exchange (PBX) (business
telephone system) in a SIP message

4 The IP PBX establishes a call between the
devices

5 The IP PBX sends device events to the
CEA system application

6 The CEA system application sends device
events to the business application using
WS-Notification

Leveraging The Web Services Interface Of The Communications Enabled Applications Feature Pack

Business Application

WebSphere
Application

Server

IP PBX

Device 1 Device 2

CEA
System

Application

1 6

2

3

4

5

17 © 2009 IBM Corporation

Sample application using Rational Application Developer

■ This talk explains the steps necessary to develop the sample Web services application that is
supplied with the CEA feature pack using Rational Application Developer 7.5

■ To access telephony services with Web services:
1 Create an application server profile for the CEA Feature Pack
2 Obtain the WSDL and schema files for the CEA service from the application server
3 Configure the application server to support the CEA Web service
4 Install and configure the IP PBX
5 Restart the server
6 Develop and deploy the application

Leveraging The Web Services Interface Of The Communications Enabled Applications Feature Pack

18 © 2009 IBM Corporation

Create an application server profile for the CEA Feature Pack

● Create a new profile by selecting an
environment under the WebSphere
Application Server Feature Pack for CEA
section in the Profile Management Tool:

● It is also possible to augment existing
profiles that were not created for the CEA
Feature Pack using the Profile
Management Tool:

Leveraging The Web Services Interface Of The Communications Enabled Applications Feature Pack

19 © 2009 IBM Corporation

Obtain the WSDL files and schema files (1)

1 Ensure the application server is started

2 Open the URL: http://host:port/commsvc.rest/ControllerService?wsdl
● In this URL, host is the IP address or host name on which the Web container is listening

and port is the default http port.
● The WSDL file created during installation is read by the Web services infrastructure. The

correct host and port are configured in the WSDL file sent to the browser.

● The file contains the ControllerService service and the operations openSession,
makeCall, endCall and closeSession.

3 Save the file as ControllerService.wsdl

Leveraging The Web Services Interface Of The Communications Enabled Applications Feature Pack

20 © 2009 IBM Corporation

Obtain the WSDL files and schema files (2)

4 Open the URL: http://host:port/commsvc.rest/CeaNotificationConsumer?wsdl
● The file contains the CeaNotificationConsumer service with the

CeaNotificationConsumerSOAP binding to the Notify operation of the WS-Notification
NotificationConsumer.

5 Save the file as CeaNotificationConsumer.wsdl

6 Open the URL: http://host:port/commsvc.rest/ControllerService/WEB-INF/wsdl/
ControllerService_schema1.xsd

7 Save the file as ControllerServiceschema1.xsd

Leveraging The Web Services Interface Of The Communications Enabled Applications Feature Pack

21 © 2009 IBM Corporation

Create a new workspace and project

1 Open Rational Application Developer 7.5
with a new workspace

2 Create a new Dynamic Web Project called
commsvc.ws.sample

3 Open the Java EE perspective

Leveraging The Web Services Interface Of The Communications Enabled Applications Feature Pack

22 © 2009 IBM Corporation

Generate the Web services client code (1)

1 Create a new folder called wsdl under
commsvc.ws.sample/WebContent/WEB-
INF and import the WSDL and schema files
into it.

2 Right-click the ControllerService.wsdl file
and select Web Services > Generate
Client:

Leveraging The Web Services Interface Of The Communications Enabled Applications Feature Pack

23 © 2009 IBM Corporation

Generate the Web services client code (2)

3 On the Web Services page,
set the configuration slider to
Develop client

● This tells the wizard to
create the WSDL
definition and
implementation of the Web
service.

● This includes such tasks
as creating the modules
that contain the generated
code, the WSDL files, the
deployment descriptors,
and the Java files when
appropriate.

4 Click Finish.

Leveraging The Web Services Interface Of The Communications Enabled Applications Feature Pack

24 © 2009 IBM Corporation

Generate the Web services client code (3)

5 Look through the newly generated files located in Java
Resources/src/com.ibm.ws.commsvc.webservice.impl:

● Notice that classes have been generated for the
OpenSession, CloseSession, MakeCall, and EndCall
operations available on the CEA Web service

Leveraging The Web Services Interface Of The Communications Enabled Applications Feature Pack

25 © 2009 IBM Corporation

Generate the Web services client code (4)

6 Open the ControllerService.java file to see the JAX-WS annotations:
● The @WebServiceClient is used to annotate a generated service interface. The

information specified in this annotation is sufficient to uniquely identify a wsdl:service
element inside a WSDL document. This wsdl:service element represents the Web
service for which the generated service interface provides a client view:

● The @WebEndpoint annotations are used to annotate the getPortName() methods of a
generated service interface. The information specified in this annotation is sufficient to
uniquely identify a wsdl:port element inside a wsdl:service:

Leveraging The Web Services Interface Of The Communications Enabled Applications Feature Pack

26 © 2009 IBM Corporation

Create the front-end servlet (1)

1 Create a new servlet called CommWebServiceServlet in the commsvc.ws.sample project
with the com.ibm.ws.commsvc.webservice Java package.

2 Open commsvc.ws.sample/commsvc.ws.sample/Servlets/CommWebServiceServlet.

3 In the Design view, on the left panel, select Servlet Mapping CommWebServiceServlet. In
the Details section select Add.

Leveraging The Web Services Interface Of The Communications Enabled Applications Feature Pack

27 © 2009 IBM Corporation

Create the front-end servlet (2)

4 Click the new item that shows in the URL Pattern box and enter /CommWebServiceServlet/*.

5 On the left panel select Welcome File List and select Remove.

6 Save the file and close.

Leveraging The Web Services Interface Of The Communications Enabled Applications Feature Pack

28 © 2009 IBM Corporation

Create the front-end servlet (3)

7 Create two classes called CommWebServiceServlet.java and PhoneSession.java in
commsvc.ws.sample\Java Resources\src\com.ibm.ws.commsvc.webservice and copy the
sample code from the Redpaper referenced at the end of the talk.

8 CommWebServiceServlet.java outputs different HTML forms depending on the current call
state. We will see screenshots of these forms later.

9 PhoneSession.java contains the code to control the state and actions taken related to a
specific phone.

● The accessWebService() method gets access to the Web service client:

Leveraging The Web Services Interface Of The Communications Enabled Applications Feature Pack

29 © 2009 IBM Corporation

Create the front-end servlet (4)

● The openSession() method starts monitoring a telephone:

● The EPR must be used in all other API calls related to the session monitoring that phone.
It has enough information for the Web service to track requests and to ensure follow-on
requests go back to the same container in a clustered environment.

● Notice that notifyCallback is also set, this is the URL needed to contact to trigger a call
notification (WS-Notification).

Leveraging The Web Services Interface Of The Communications Enabled Applications Feature Pack

30 © 2009 IBM Corporation

Create the front-end servlet (5)

● There are also methods to make a call, end a call, and close a session. Note the use of
the EPR in each of the methods:

Leveraging The Web Services Interface Of The Communications Enabled Applications Feature Pack

31 © 2009 IBM Corporation

Create the front-end servlet (6)

● The updateState() method will update the softphone session with the new call status
information that arrived in a WS-Notification:

Leveraging The Web Services Interface Of The Communications Enabled Applications Feature Pack

32 © 2009 IBM Corporation

Generate the WS-Notification consumer service (1)

1 Right-click the
CeaNotificationConsumer.wsdl file and
select Web Services > Generate Java
bean skeleton:

Leveraging The Web Services Interface Of The Communications Enabled Applications Feature Pack

33 © 2009 IBM Corporation

Generate the WS-Notification consumer service (2)

2 On the Web Services page set
the configuration slider to
Develop service

3 Click Finish

Leveraging The Web Services Interface Of The Communications Enabled Applications Feature Pack

34 © 2009 IBM Corporation

Generate the WS-Notification consumer service (3)

● The newly generated files include the Java service implementation class,
CeaNotificationConsumerSOAPImpl.java, the service interface,
NotificationConsumer.java, and the associated Oasis files:

● Open the Java service implementation class, CeaNotificationConsumerSOAPImpl.java in
Java Resources/src/com.ibm.ws.commsvc.webservice.ceanotificationconsumer. Notice
the @WebService annotation. This is used to specify that the class is a Web service or
that the interface defines a Web service:

Leveraging The Web Services Interface Of The Communications Enabled Applications Feature Pack

35 © 2009 IBM Corporation

Generate the WS-Notification consumer service (4)

■ Also notice that a notify() method is
automatically generated.

– This is the method that should
be implemented to receive and
process notification messages.

– It is called automatically by the
server's notification broker
when a notification takes place.

■ Replace the notify() method with
this code. First it extracts the list of
notification messages. Next, it
loops through the messages and
gets the message content as a
DOM Element. Then it builds a
CallStatus object out of the
notification by looping through and
matching the text to a member of
the CallStatus object and setting it.
Finally, it updates the status of the
associated client state object.

Leveraging The Web Services Interface Of The Communications Enabled Applications Feature Pack

36 © 2009 IBM Corporation

Configure the application server (1)

1 From Rational Application Developer, export the commsvc.ws.sampleEAR project as an EAR
File. The EAR file will include the JAX-WS annotated classes, WSDL files, XSD schema, and
client side code.

2 Ensure the application server is started.

3 Ensure the communications service is enabled using the WebSphere Application Server
administrative console

– Navigate to Servers > Server Types > WebSphere application servers > <server_name>
> select Communications Enabled Applications (CEA):

– Make sure the Enable communications service option is selected:

Leveraging The Web Services Interface Of The Communications Enabled Applications Feature Pack

37 © 2009 IBM Corporation

Configure the application server (2)

4 Run the script provided in the CEA installation to setup WS-Notification infrastructure in the
base application server. The script creates a service integration bus, creates a WS-
Notification service, creates a service point associated with the WS-Notification service, and
starts the deployed service point enterprise application.

a Open a command prompt.
b Change directories to <WAS_HOME>\profiles\<CEA_PROFILE_NAME>\bin.
c Issue the following command:
wsadmin -f <WAS_HOME>\feature_packs\cea\scripts\CEA_WSN_JAXWS_Setup.py
d After the script has run successfully close the command prompt window.

5 Install the sample IP PBX (Applications > New application > New enterprise application >
<WAS_HOME>\feature_packs\cea\samples\commsvc.pbx.ear > keep all defaults and Save)

6 Restart the application server

7 Install and start the application through the administrative console.

Leveraging The Web Services Interface Of The Communications Enabled Applications Feature Pack

38 © 2009 IBM Corporation

Test the application (1)

1 Start two softphones, for example: sip:CSR@localhost and sip:Customer@localhost.

2 Open a browser window and point it to: http://host:port/commsvc.ws.sample/
CommWebServiceServlet

● The CEA Web Service Sample page displays. This page includes a form to Open a
session to monitor a phone.

● In the Phone address of record text box, we'll enter the address of the softphone to be
monitored. It must match the address of record that the softphone used to register with the
PBX.

3 Enter sip:CSR@localhost in the “Phone address of record” text box.

Leveraging The Web Services Interface Of The Communications Enabled Applications Feature Pack

39 © 2009 IBM Corporation

Test the application (2)

4 Click “Open session”.
– A request is sent to the sample's servlet, which

calls the openSession Web service API.
– A “Phone Status” page is presented. Notice the

address of record is set to what was entered on
the first panel and that the call status is
CALL_STATUS_CLEARED

– If a call is not active, the “Peer address of
record” text box can be filled in with another
phone's address. This address must also be
registered with the PBX.

– Clicking “Make call”causes the monitored
softphone to call the entered peer softphone with
the makeCall Web service API.

5 Enter sip:Customer@localhost in the Peer address of
record text box, and select Make a call.

Leveraging The Web Services Interface Of The Communications Enabled Applications Feature Pack

40 © 2009 IBM Corporation

Test the application (3)

6 The CSR softphone rings. When the call gets
delivered the status will update.

7 Answer both phones and select Refresh call
status. This button fetches any status updates that
the application servlet has received through WS-
Notification. Notice how the status now states
CALL_STATUS_ESTABLISHED.

8 Select End the call. This triggers the endCall Web
service API to end the call and the call status goes
back to CALL_STATUS_CLEARED.

9 Select Close the session. This triggers the
closeSession Web service API and terminates the
monitoring session for the phone. The CEA Web
Service Sample page displays again.

Leveraging The Web Services Interface Of The Communications Enabled Applications Feature Pack

41 © 2009 IBM Corporation

External Web services support

■ When the CEA Web service is invoked, it interacts with an IP PBX to monitor and control
phones.

■ The CEA Web service interface is described by the ControllerService.wsdl file.

■ If an external provider creates a Web service that implements the same WSDL, then CEA can
be configured to use that provider instead of the CEA Web service.

■ This allows vendors to customize interactions with their IP PBX.

■ This configuration disables the existing CEA Web service, but the REST interface is still
available.

■ As REST requests are received, CEA uses a Web services client to communicate with the
external Web service provider.

■ The external Web service provider is responsible for all communication with the IP PBX to
provide third party call control.

■ The external Web service provider must be deployed and running on a server accessible from
the CEA server and the location of the WSDL file for the external service must be known and
accessible by using an HTTP request. An IP PBX must be started and configured as well.

Leveraging The Web Services Interface Of The Communications Enabled Applications Feature Pack

42 © 2009 IBM Corporation

External Web services call flow

1 The client sends an HTTP REST request.

2 The WebSphere Application Server Web
container calls the CEA system application.

● The CEA servlet interprets the REST
request.

● The CEA servlet uses a Web services
client.

3 The CEA system application sends the
Web service request to the external Web
service provider.

4 The external Web service interacts with the
IP PBX. Interaction can be proprietary.

5 The IP PBX establishes a call between
devices.

6 The external Web service sends device
events to CEA using WS-Notification.

Leveraging The Web Services Interface Of The Communications Enabled Applications Feature Pack

Client

WebSphere
Application

Server

IP PBX

Device 1 Device 2

CEA
System

Application

1

6

2

3

4

5

1

External Web
Service Provider

43 © 2009 IBM Corporation

Implementation Overview

1 Enable the CEA system application in WebSphere Application Server.

2 Install and configure the IP PBX.

3 Install and configure the external Web service.

4 Configure the location of the third-party Web service WSDL:
– In the administrative console, click Servers > Server Types > WebSphere application
– servers > <server_name> > Communications Enabled Applications (CEA).
– Select the Use a third-party Web services provider for telephony access option and enter

the HTTP URL of the third-party WSDL:

– Save the settings and restart the server so that the new changes are applied to the run
time.

5 Develop an application that calls the REST interface.

6 Install and start the new application.

Leveraging The Web Services Interface Of The Communications Enabled Applications Feature Pack

44 © 2009 IBM Corporation

Summary

■ The CEA Feature Pack is a free extension available to WebSphere Application Server V7.0
customers that:

– Simplifies the addition of communications capabilities to new and existing applications
– Improves customer support experience through new methods of interaction such as click-

to-call, co-browsing and synchronised two-way forms
– Lowers costs through reuse of existing Java skills, applications and telephony

infrastructure

■ There are REST, Dojo widgets, JSR 289 and Web services interfaces available

■ Web service calls can be made by application components to access the communication
services to:

– Open a telephony session
– Make a call
– End a call
– Close a telephony session
– Get asynchronous call status updates using WS-Notification

■ It is possible to use an external Web service provider instead of the CEA Web service for
proprietary interactions

Leveraging The Web Services Interface Of The Communications Enabled Applications Feature Pack

45 © 2009 IBM Corporation

Further information / Questions?

■ Product information: http://www-01.ibm.com/software/webservers/appserv/was/featurepacks/
cea/

■ V1.0.0.1 fixpack: http://www-01.ibm.com/support/docview.wss?uid=swg24024830

■ Redpaper: http://www.redbooks.ibm.com/redpieces/abstracts/redp4613.html

■ Information Center: http://publib.boulder.ibm.com/infocenter/wasinfo/fep/index.jsp?topic=/
com.ibm.websphere.ceafep.multiplatform.doc/info/ae/ae/welcome_fepcea.html

■ Blog: http://ibmcea.blogspot.com/

■ YouTube: http://www.youtube.com/user/IBMcea

■ Email: katherine_sanders@uk.ibm.com

Leveraging The Web Services Interface Of The Communications Enabled Applications Feature Pack

	Leveraging The Web Services Interface Of The Communications Enabled Applications Feature Pack
	Agenda
	IBM® WebSphere® Application Server V7 Feature Pack for Communications Enabled Applications (CEA feature pack)
	CEA feature pack version 1.0
	CEA feature pack version 1.0.0.1
	Business scenario 1: Click-to-call with co-browsing
	Business scenario 2: Shopping with a friend
	Business scenario 3: Tracking and reporting call statistics
	Interfaces to the communications services – REST
	Interfaces to the communications services – widgets
	Interfaces to the communications services – JSR 289
	Interfaces to the communications services – Web services
	Web services overview
	Web services tooling
	CEA feature pack WSDL documents
	Web services call flow
	Sample application using Rational Application Developer
	Create an application server profile for the CEA Feature Pack
	Obtain the WSDL files and schema files (1)
	Obtain the WSDL files and schema files (2)
	Create a new workspace and project
	Generate the Web services client code (1)
	Generate the Web services client code (2)
	Generate the Web services client code (3)
	Generate the Web services client code (4)
	Create the front-end servlet (1)
	Create the front-end servlet (2)
	Create the front-end servlet (3)
	Create the front-end servlet (4)
	Create the front-end servlet (5)
	Create the front-end servlet (6)
	Generate the WS-Notification consumer service (1)
	Generate the WS-Notification consumer service (2)
	Generate the WS-Notification consumer service (3)
	Generate the WS-Notification consumer service (4)
	Configure the application server (1)
	Configure the application server (2)
	Test the application (1)
	Test the application (2)
	Test the application (3)
	External Web services support
	External Web services call flow
	Implementation Overview
	Summary
	Further information / Questions?

