
© 2007 IBM Corporation

Java 5.0 Reliability, Availability and Serviceability

Java 5 Diagnostic Tools and Capabilities
Chris Bailey baileyc@uk.ibm.com

Trent Gray-Donald trent@ca.ibm.com



2

IBM Java Technologies

Java 5.0 RAS |  Java 5.0 Tools and Capabilities  |  WebSphere User Group, Edinburgh 2007 © 2007 IBM Corporation

Agenda

� History
� 5.0 VM Problem Determination recap
� Strategic direction
� Tools dive
� Education / IBM Support Assistant
� Discussion / Questions



3

IBM Java Technologies

Java 5.0 RAS |  Java 5.0 Tools and Capabilities  |  WebSphere User Group, Edinburgh 2007 © 2007 IBM Corporation

History

� Fragmented tooling story
– Different tools for different folks, find tools in various places

– In the JDK itself
– alphaWorks
– developerWorks
– From Java|WAS support

– Tools JVM level specific

� Substantial technology changes in underlying JVM implementation between 
1.4.2 and 5.0

– Significant robustness improvements (better compaction / fragmentation support, 
enhanced FFDC)

– Fundamental PD data produced in same format



4

IBM Java Technologies

Java 5.0 RAS |  Java 5.0 Tools and Capabilities  |  WebSphere User Group, Edinburgh 2007 © 2007 IBM Corporation

Java Problem Determination Strategy

� Centralization of Tools

– Central customer visible repository of supported, maintained tools

– Extensible, open tools, with programmable extension interfaces

� Tools must be usable everywhere

– GUI mode for interactive use

– Report generation for headless environments

� Documentation

– Improvements to problem determination doc

– Aggregated search in IBM Support Assistant

� Iterate!

– Tools being deployed very regularly – looking for customer feedback.



5

IBM Java Technologies

Java 5.0 RAS |  Java 5.0 Tools and Capabilities  |  WebSphere User Group, Edinburgh 2007 © 2007 IBM Corporation

Recap of JDK 5.0 Problem Determination facilities

� -Xtrace

– Always on FFDC trace for major components

– Separate buffers for GC – allows ‘flight recorder’

– Method parameters available (if enabled)

� -Xdump

– New triggers (thread start/stop, GC, heap expand, etc..)

– More naming configuration allowed (date/time/etc..)

� java.lang.Management

– Java level APIs to introspect into running system



6

IBM Java Technologies

Java 5.0 RAS |  Java 5.0 Tools and Capabilities  |  WebSphere User Group, Edinburgh 2007 © 2007 IBM Corporation

Java Trace Engine

�Thousands of tracepoints throughout VM native code

�Can capture Java Methods data also

�Many different operation modes to aid debugging and problem 
diagnosis

�Limited “Flight Recorder” trace set is always on in Java 5.0
– Key vm tracepoints constantly traced into per thread wrapping memory buffers

– GCLogger tracepoints are stored in separate buffer to ensure they are not overwritten by the high 
frequency tracepoints



7

IBM Java Technologies

Java 5.0 RAS |  Java 5.0 Tools and Capabilities  |  WebSphere User Group, Edinburgh 2007 © 2007 IBM Corporation

Controlling Trace

�The Trace Engine can be controlled through a number of 
mechanisms:

– Through the -Xtrace command-line option 

– Using a trace properties file 

– Dynamically using Java code through the com.ibm.jvm.Trace API 

– Using trace trigger events 

– From an external agent using the C-based JVM RAS Interface (JVMRI) 

�Primary way is via the -Xtrace option on the command line.



8

IBM Java Technologies

Java 5.0 RAS |  Java 5.0 Tools and Capabilities  |  WebSphere User Group, Edinburgh 2007 © 2007 IBM Corporation

Basics of Activating Trace

�The first thing that you need to determine is the destination to which 
the trace output should be directed 

– minimal Trace identifier and timestamp only to in-core buffer. 

– maximal Trace identifier, timestamp and associated data to in-core buffer. 

– count Report the number of times a selected tracepoint is called 

– print Trace selected tracepoints to stderr with no indentation.

– iprint Trace selected tracepoints to stderr with indentation.

– externalRoute selected tracepoints to a JVMRI listener.

– exception Trace selected tracepoints to an in-core buffer reserved for exceptions.

�The value of each keyword is then set to the trace points required
– -Xtrace:maximal=all traces all of the information available from all JVM trace points 

to internal wrapping buffers.

– -Xtrace:iprint=awt traces all of the JVM internal AWT trace points to stderr, with 

Indentations on entry and exit.

– -Xtrace:iprint=mt activates method trace and set the output to stderr with 

indentations



9

IBM Java Technologies

Java 5.0 RAS |  Java 5.0 Tools and Capabilities  |  WebSphere User Group, Edinburgh 2007 © 2007 IBM Corporation

Putting Trace Into Files

�Data can be written to file as an extension to in-storage trace

�To specify that the output of minimal or maximal trace options 
should be written to a file, the output keyword should be used

– -Xtrace:maximal=all,output=trace.out

traces into a file called trace.out. 

– -Xtrace:maximal=all,output={trace.out,5m}

traces into a file called trace.out and wraps within the file once it has reached 5MB in size. 

– -Xtrace:maximal=all,output={trace#.out,5m,5}

traces sequentially into five files, each 5MB in size, with # substituted for the file iteration number. 

�It is also possible to put the following substitutions into the file name: 
– %p: The ID for the Java process. 

– %d: The current date, in yyyymmdd format. 

– %t: The current time, in hhmmss format. 



10

IBM Java Technologies

Java 5.0 RAS |  Java 5.0 Tools and Capabilities  |  WebSphere User Group, Edinburgh 2007 © 2007 IBM Corporation

Method Trace

�Instrumentation free tracing of:
– Any Java Methods:

– Core Java API, Middleware, 3rd party code, Customer code

– Detailed information:
– Entry and Exit points, with thread information and microsecond time stamps

�Two part invocation:
– 1) Add methods keyword as a token to –Xtrace

– 2) Use of mt as value to destination keyword (eg. maximal, print)

�Method selection by class name or method name
– use of wildcards, along with the not operator, !, allowing for complex selection 

criteria. 
– -Xtrace:print=mt,methods={*.*,!java/lang/*.*}

Write method trace to stderr for all methods and for all classes except those in the java.lang package.

– -Xtrace:maximal=mt,output=trace.out,methods={tests/mytest/*.*}

Write method trace to file for all methods in the tests.mytest package. (Note that this option selects only the 
methods that are to be traced.) 



11

IBM Java Technologies

Java 5.0 RAS |  Java 5.0 Tools and Capabilities  |  WebSphere User Group, Edinburgh 2007 © 2007 IBM Corporation

Triggering

�Trace can produce significant amounts of data
�The trace engine provides the ability to trigger on trace events

– Provides ability to create targeted trace output

– Reduces volume of data and performance impact

– Provides ability to also generate dumps on trace points

�Following actions available as value of trigger keyword
– suspend Suspend all tracing

– resume Resume all tracing (except for threads suspended by resumecount

property and Trace.suspendThis() calls).

– suspendthis Increment the suspend count for this thread. A non-zero suspend count prevents 

tracing for the thread.

– resumethis Decrement the suspend count for this thread if it is greater than zero. If the suspend 

count reaches zero, tracing for this thread will be resumed.

– sysdump Produce a non-destructive system dump.

– javadump Produce a Java dump. 

– heapdump Produce a heap dump.

– snap Snap all active trace buffers to a file in the current working directory.



12

IBM Java Technologies

Java 5.0 RAS |  Java 5.0 Tools and Capabilities  |  WebSphere User Group, Edinburgh 2007 © 2007 IBM Corporation

Triggering Examples

�Following format used to specify triggers in method events:
�trigger=method{method spec,entry action,exit action,delay count,match count}

– On entering any method that matches the method spec indicated, the entry action is executed. 

– When exiting the method, the exit action is performed. 

– If the delay count is specified, the entry and exit actions are only carried out when entry and exit have 
occurred more times than the delay count. 

– If the match count is specified, the actions are only carried out a maximum of that many times.

�Examples: 
– -Xtrace:trigger=method{java/lang/StackOverflowError*, sysdump}

create a system dump on the first (and only the first) instance of a StackOverflowError method being 
called - which is the <clinit> method. 

– -Xtrace:resumecount=1 

– -Xtrace:trigger=method{HelloWorld.main,resume,suspend} 
trace all threads once HelloWorld.main() is called and stop tracing when HelloWorld.main() returns. 



13

IBM Java Technologies

Java 5.0 RAS |  Java 5.0 Tools and Capabilities  |  WebSphere User Group, Edinburgh 2007 © 2007 IBM Corporation

Triggering and Method Trace in Action

-Xtrace:print=mt,methods={myapp/MyTime*},resumecount=1,trigger=method{myapp/MyTime.main,resume,suspend}

21:05:47.992*0x806cb00      mt.3         > myapp/MyTime.main([Ljava/lang/String;)V Bytecode static method

21:05:47.994 0x806cb00      mt.19         - Static method arguments: ([L@55D8CB98)

21:05:47.994 0x806cb00      mt.0          > myapp/MyTime.<init>()V Bytecode method, This = 809baec

21:05:47.994 0x806cb00      mt.18          - Instance method receiver: myapp/MyTime@55D8CBA8 arguments: ()

21:05:47.994 0x806cb00      mt.6          < myapp/MyTime.<init>()V Bytecode method

21:05:47.994 0x806cb00      mt.0          > myapp/MyTime.test()V Bytecode method, This = 809baf0

21:05:47.994 0x806cb00      mt.18          - Instance method receiver: myapp/MyTime@55D8CBA8 arguments: ()

21:05:48.079 0x806cb00      mt.6          < myapp/MyTime.test()V Bytecode method

21:05:48.079 0x806cb00      mt.9         < myapp/MyTime.main([Ljava/lang/String;)V Bytecode static method

Only real time (79ms) is in the call to MyTime.test()

Could now drill down into MyTime.test():
extend scope of methods traced, and reduce scope of tracing into MyTime.test()

-Xtrace:print=mt,methods={myapp/*},resumecount=1,trigger=method{myapp/MyTime.test,resume,suspend}

21:07:14.968*0x806cb00      mt.0         > myapp/MyTime.test()V Bytecode method, This = 809baf0

21:07:14.970 0x806cb00      mt.18         - Instance method receiver: myapp/MyTime@55D8CBA8 arguments: ()

21:07:15.067 0x806cb00      mt.3          > myapp/MyTimer.getTime()V Bytecode static method

21:07:15.067 0x806cb00      mt.19          - Static method arguments: ()

21:07:15.067 0x806cb00      mt.9          < myapp/MyTimer.getTime()V Bytecode static method

21:07:15.069 0x806cb00      mt.6         < myapp/MyTime.test()V Bytecode method



14

IBM Java Technologies

Java 5.0 RAS |  Java 5.0 Tools and Capabilities  |  WebSphere User Group, Edinburgh 2007 © 2007 IBM Corporation

Java Dump Engine

� 5/6 available dump types:
console    Basic thread dump to stderr

system           Capture raw process image

tool             Run command line program

java             Write application summary

heap             Capture raw heap image

snap             Take a snap of the trace buffers

� Large range of dump triggers
– 14 available triggers
– Dump events extended by the use of filters

� User defined dump labels
– Ability to include: time, date, pid, uid, jre info

� Ability to configure number of dumps generated

� Ability to execute tool on dump event



15

IBM Java Technologies

Java 5.0 RAS |  Java 5.0 Tools and Capabilities  |  WebSphere User Group, Edinburgh 2007 © 2007 IBM Corporation

Trigger Events

gpf an unexpected crash, such as a SIGSEGV or a SIGILL

user SIGQUIT signal (Ctrl-Brk on Windows, Ctrl-\ on Linux, Ctrl-V on z/OS)

abort a controlled crash, as triggered by the abort() system call

vmstart the VM has finished initialization

vmstop the VM is about to shutdown

load a new class has been loaded

unload a classloader has been unloaded

throw a Java exception has been thrown

catch a Java exception has been caught

uncaught a Java exception was not handled by the application

thrstart a new thread has started

thrstop an old thread has stopped

blocked a thread is blocked entering a monitor

fullgc garbage collection has started



16

IBM Java Technologies

Java 5.0 RAS |  Java 5.0 Tools and Capabilities  |  WebSphere User Group, Edinburgh 2007 © 2007 IBM Corporation

Dump filters / ranges

� class events (load, throw, catch, uncaught)

– exact name filter=java/lang/OutOfMemoryError

– prefix filter=java/lang/Out*

– substring filter=*OutOfMemory*

� vmstop event

– exit code(s) filter=#129..192#-42#255

� ranges can be used to remove “noise” or save disk space

– bounded range=1..4

– open-ended range=8..0



17

IBM Java Technologies

Java 5.0 RAS |  Java 5.0 Tools and Capabilities  |  WebSphere User Group, Edinburgh 2007 © 2007 IBM Corporation

Dump Labels

� Can use any combination of tokens and text
� Tokens expanded at time of event

– Usual date and time: %Y, %y, %m, %d, %H, %M, %S

– High precision time: %tick (msec), %seq (dump counter)

– Process info: %pid, %uid (plus %job on z/OS)

– JRE info: %home, %last (last snapped dump label)

� VM will try to create intermediate directories, for example:

/mnt/archive/dumps/%Y%m%d/%pid/javacore.%tick.txt



18

IBM Java Technologies

Java 5.0 RAS |  Java 5.0 Tools and Capabilities  |  WebSphere User Group, Edinburgh 2007 © 2007 IBM Corporation

Dump Tools

� Spawns external command

– -Xdump:tool:exec=<command string>

� Command string can contain tokens

– “%home\bin\jextract core.%Y%m%d.%H%M%S.%pid.dmp”

� Default tool attaches platform debugger to VM

– Windows: windbg

– Linux: gdb

– AIX, z/OS: dbx



19

IBM Java Technologies

Java 5.0 RAS |  Java 5.0 Tools and Capabilities  |  WebSphere User Group, Edinburgh 2007 © 2007 IBM Corporation

Strategic Direction - DTFJ

DTFJ (Diagnostic Tooling Framework for Java) is a new technology within the IBM JDK to analyze and diagnose 
problems in Java applications

– Read RAS artifacts from a JVM (e.g. a core file) and extract all kinds of useful information from that dump

– Not just one tool: an extensible framework for building many different tools

� Components of the DTFJ family
– jextract: a tool to capture information from a JVM system dump (e.g. core file) and package it into a platform-

independent format

– DTFJ library proper or core library: a library that parses the contents of the system dump file packaged by 
jextract, and provides access to its contents in a standardized manner, through a standard API

– DTFJ-based tools: a collection of end-user tools that call the DTFJ library through the DTFJ API, to present and 
analyze information in various ways useful to the users



20

IBM Java Technologies

Java 5.0 RAS |  Java 5.0 Tools and Capabilities  |  WebSphere User Group, Edinburgh 2007 © 2007 IBM Corporation

Roadmap: Where we are coming from

User manually interprets results
from each tool
User manually correlates results
from multiple tools

verboseGC log

system core/dump

PMAT

GCCollector

tweety

GCAnalyzer

DTFJ

jcore/jdump

javacore

ThreadAnalyzer

heapdump HeapRoots

HeapAnalyzer

MDD4J/Leakbot

SystemOut.log

Log/Trace Analyzer

jformat

Problem Recognition

Data Transformation

Visualization

Legend:

Runtime info

SWProfiler library

kca

WAS Perf Advisors



21

IBM Java Technologies

Java 5.0 RAS |  Java 5.0 Tools and Capabilities  |  WebSphere User Group, Edinburgh 2007 © 2007 IBM Corporation

Roadmap: Composable Tools Architecture – where we are going 

Canonical data
representation
for each type of
information
(DTFJ+ ?)

system dump

javacore

heapdump

Adapter

Adapter

(parser)

Adapter

Adapter

SystemOut.log
Adapter

PMI data
Adapter

Heap

Threads

Objects

Component
diagnostics

...
Diagnostic Provider

Analysis modules 
Repository

Collection of cooperating, pluggable analyzer modules
• independent of source
•correlate multiple types of information
•extensible by many contributors

Data Analysis and Transformation Engine 
(container)

Analysis Modules

Product or 
Support
Expert

Authoring tool for 
analysis modules

Common 
Problem Recognition
Engine
(incl. Symptom DB?)

Visualization Engines 

Heap Inspector

Log/Trace Inspector

Component X Inspector

Standardized Reports 

Heap Report

Special Report for
Problem Y

Input Layer Analysis Layer Output Layer



22

IBM Java Technologies

Java 5.0 RAS |  Java 5.0 Tools and Capabilities  |  WebSphere User Group, Edinburgh 2007 © 2007 IBM Corporation

Using the DTFJ components - example

jextract tool
JVM

e.g.

WAS
appserv

er

System Dump
or "core"

Platform-
independent

dump file
(.sdff or .zip)

DTFJ 

core
library

Default DumpReporter
Tool

C
o

m
m

o
n

 D
T

F
J
 A

P
I

Intentionally 
triggered dump

Or
*crash*

Should be run on the same machine where the 
dump is generated

Can be run on any machine/platform

DTFJView
Tool

Dump Analyzer Tool

Your tool here….

jextract DTFJ library end-user tools



23

IBM Java Technologies

Java 5.0 RAS |  Java 5.0 Tools and Capabilities  |  WebSphere User Group, Edinburgh 2007 © 2007 IBM Corporation

Common Problem Recognition

� Goal: reduce service turnaround time by providing a comprehensive 
suite of self-help tools and documentation

– Causal analysis of PMRs in both WAS and JDK to detect common idiom (across all 
platforms)

– Documentation revisions and enhancements

– IBM Education Assistant

– IBM Guided Activity Assistant



24

IBM Java Technologies

Java 5.0 RAS |  Java 5.0 Tools and Capabilities  |  WebSphere User Group, Edinburgh 2007 © 2007 IBM Corporation

IBM Support Assistant

� Hosting for Serviceability Tools across product families
� Automatic PD data gathering
� Assist with opening PMRs and working with IBM Support
� Documentation

– Aggregated Search across sources

– Regular updates to Diagnostics Guide



25

IBM Java Technologies

Java 5.0 RAS |  Java 5.0 Tools and Capabilities  |  WebSphere User Group, Edinburgh 2007 © 2007 IBM Corporation



26

IBM Java Technologies

Java 5.0 RAS |  Java 5.0 Tools and Capabilities  |  WebSphere User Group, Edinburgh 2007 © 2007 IBM Corporation

ISA - Search



27

IBM Java Technologies

Java 5.0 RAS |  Java 5.0 Tools and Capabilities  |  WebSphere User Group, Edinburgh 2007 © 2007 IBM Corporation



28

IBM Java Technologies

Java 5.0 RAS |  Java 5.0 Tools and Capabilities  |  WebSphere User Group, Edinburgh 2007 © 2007 IBM Corporation



29

IBM Java Technologies

Java 5.0 RAS |  Java 5.0 Tools and Capabilities  |  WebSphere User Group, Edinburgh 2007 © 2007 IBM Corporation

Common Support Concerns – what we heard

� OutOfMemoryError / heap Size Tuning
– It’s hard to tune the right GC parameters, and figure out where memory leaks come 

from.

� Deadlocks / hangs / spins
– Need ability to introspect on a running JVM to determine what’s happening at the 

moment – in a report based way.

� General analysis tools
– Need ability to examine JVM data – classloaders, threads, monitors, etc.. to do 

general PD tasks.



30

IBM Java Technologies

Java 5.0 RAS |  Java 5.0 Tools and Capabilities  |  WebSphere User Group, Edinburgh 2007 © 2007 IBM Corporation

Tools

� IBM Support Assistant “umbrella”
– MDD4J (Memory Dump Diagnostics For Java)

– EVTK (Extensible Verbose ToolKit)

– DumpAnalyser

– ThreadAnalyser

– Java Lock Monitor (JLM)

– IBM Guided Activity Assistant (IGAA)

� RAD (Rational Application Developer) & family



31

IBM Java Technologies

Java 5.0 RAS |  Java 5.0 Tools and Capabilities  |  WebSphere User Group, Edinburgh 2007 © 2007 IBM Corporation

MDD4J

� Java Memory Analysis tool
– Help explain / track down OutOfMemoryError

– Performance problems when object use

� 2 modes of use
– Single snapshot – to visualize a given heap

– Delta mode – to track growth between 2 points in time

� Input data types supported
– IBM Portable Heap Dump (heapdump.phd) 

– IBM Text heap dump (heapdump.txt) 

– HPROF heap dump format (hprof.txt) 

– 2007 workplan – DTFJ adaptors (thus direct svcdump consumption)

� Aims to replace HeapRoots, FindRoots, etc..
– Compatible imputs with those tools

– Full replacement only when true full functional superset



32

IBM Java Technologies

Java 5.0 RAS |  Java 5.0 Tools and Capabilities  |  WebSphere User Group, Edinburgh 2007 © 2007 IBM Corporation



33

IBM Java Technologies

Java 5.0 RAS |  Java 5.0 Tools and Capabilities  |  WebSphere User Group, Edinburgh 2007 © 2007 IBM Corporation



34

IBM Java Technologies

Java 5.0 RAS |  Java 5.0 Tools and Capabilities  |  WebSphere User Group, Edinburgh 2007 © 2007 IBM Corporation

Extensible Verbose Toolkit (eVTK)

� EVTK is a verbose GC analysis tool

� Handles verbose GC from all versions of IBM JVMs
– 1.4.2 and lower 

– 1.5.0 and higher

– WebSphere real time 

– Intel, PowerPC, Z-Series,

� … and Solaris platforms



IBM Java Technologies

Java 5.0 RAS |  Java 5.0 Tools and Capabilities  |  WebSphere User Group, Edinburgh 2007 © 2007 IBM Corporation

EVTK capabilities
� Analyses heap usage, heap size, pause times,  and many other 

properties

� Compare multiple logs in the same plots and reports 

� Many views on data
– Reports

– Graphs 

– Tables

� Can save data to 
– HTML reports

– JPEG pictures

– CSV files



36

IBM Java Technologies

Java 5.0 RAS |  Java 5.0 Tools and Capabilities  |  WebSphere User Group, Edinburgh 2007 © 2007 IBM Corporation

EVTK – Heap Visualization

Heap occupancy

Pause times



37

IBM Java Technologies

Java 5.0 RAS |  Java 5.0 Tools and Capabilities  |  WebSphere User Group, Edinburgh 2007 © 2007 IBM Corporation

EVTK - Comparison & Advice

Compare runs…

Performance advisor…



38

IBM Java Technologies

Java 5.0 RAS |  Java 5.0 Tools and Capabilities  |  WebSphere User Group, Edinburgh 2007 © 2007 IBM Corporation

DumpAnalyzer initial release

� Aim to diagnose
– Deadlock in Java code

– Report thread names / locations etc.

– Out of memory condition

– Report populations and large collections etc.

– Summarise the native memory usage

– Recommend further analysis using eg MDD4J

– Analysis generally requires multiple heap dumps

– Internal error (gpf etc.)

– Is failure in non-IBM native code ?

– Probably user coding error, report location etc.

– If on J9 recommend running with -Xcheck:jni

– Otherwise open PMR (use ISA to assist with data gathering)



39

IBM Java Technologies

Java 5.0 RAS |  Java 5.0 Tools and Capabilities  |  WebSphere User Group, Edinburgh 2007 © 2007 IBM Corporation

DumpAnalyzer deadlock example
Start analysis of C:\a_tsm\workspaces\DumpAnalyzer\bin\core.20070315.101244.5436.dmp.zip
Execution time : 3925ms

Deadlocks detected - now trying to determine cause

Run report on analyzer: com.ibm.dtfj.analyzer.DTFJDeadlock rule: default

Error : Deadlock cycle detected on monitor com.ibm.dtfj.java.j9.JavaMonitor@7b3c48
Error : Deadlock cycle detected on monitor com.ibm.dtfj.java.j9.JavaMonitor@7b3c88
Error : Deadlock cycle detected on monitor com.ibm.dtfj.java.j9.JavaMonitor@7b35a8

Deadlock cycle detected
0 monitor <com.ibm.dtfj.java.j9.JavaMonitor@7b3c48> is owned by thread <Thread 1> which is waiting 

on monitor ...
1 monitor <com.ibm.dtfj.java.j9.JavaMonitor@7b3c88> is owned by thread <Thread 2> which is waiting 

on monitor ...
2 monitor <com.ibm.dtfj.java.j9.JavaMonitor@7b35a8> is owned by thread <Thread 3> which is waiting 

on monitor ...
3 monitor <com.ibm.dtfj.java.j9.JavaMonitor@7b3c48> is owned by thread <Thread 1> which is waiting 

on monitor ...
.
.

Thread Thread 1 : owned monitors and top 2 frames on stack
owns com.ibm.dtfj.java.j9.JavaMonitor@7b3c48
frame 1 com/ibm/monitor/test/TestDeadlock$AThread::grabLocks ()V lev 0
frame 2 com/ibm/monitor/test/TestDeadlock$AThread::run ()V lev 0

Thread Thread 3 : owned monitors and top 2 frames on stack
owns com.ibm.dtfj.java.j9.JavaMonitor@7b35a8
frame 1 com/ibm/monitor/test/TestDeadlock$AThread::grabLocks ()V lev 0
frame 2 com/ibm/monitor/test/TestDeadlock$AThread::run ()V lev 1

Thread Thread 2 : owned monitors and top 2 frames on stack
owns com.ibm.dtfj.java.j9.JavaMonitor@7b3c88
frame 1 com/ibm/monitor/test/TestDeadlock$AThread::grabLocks ()V lev 0
frame 2 com/ibm/monitor/test/TestDeadlock$AThread::run ()V lev 1



40

IBM Java Technologies

Java 5.0 RAS |  Java 5.0 Tools and Capabilities  |  WebSphere User Group, Edinburgh 2007 © 2007 IBM Corporation

============================ Deployed applications =============================

DefaultApplication STARTED           DefaultApplication.ear/deployments/DefaultApplication
ivtApp STARTED           ivtApp.ear/deployments/ivtApp
query                                STARTED           query.ear/deployments/query
SamplesGallery STARTED           SamplesGallery.ear/deployments/SamplesGallery
PlantsByWebSphere STARTED           PlantsByWebSphere.ear/deployments/PlantsByWebSphere
IBMUTC                               STARTED           IBMUTC.ear/deployments/IBMUTC
ver/systemApp STARTED           e:/WAS61/AppServer/systemApps/ManagementEJB.ear
ver/systemAp STARTED           e:/WAS61/AppServer/systemApps/filetransfer.ear
ver/systemApps/Sch STARTED           e:/WAS61/AppServer/systemApps/SchedulerCalendars.ear
isclite STARTED           isclite.ear/deployments/isclite

================================ EJB Container =================================

Number of EJB modules defined: 6
Number of EJB homes defined: 20
EJB Container: com/ibm/ws/runtime/component/EJBContainerImpl@00F1EA88
Number of EJBs currently in the EJB cache: 0
Number of EJB wrappers currently in the wrapper cache: 0
Local JNDI naming context name: ejb

================================ Web Container =================================
Number of web modules defined: 14
Number of servlets defined: 130
Number of servlet requests currently active: 2
Web Container: com/ibm/ws/webcontainer/component/WebContainerImpl@0104A9C8
Number of requests: 0

================================= Thread Pools =================================
Thread Pool: 

Name: PluginConfigService
Min: 5                 Max: 20                 Grow-as-needed: false   
Current size: 0
Current active threads: 0

Thread Pool: 
…..



41

IBM Java Technologies

Java 5.0 RAS |  Java 5.0 Tools and Capabilities  |  WebSphere User Group, Edinburgh 2007 © 2007 IBM Corporation

Java Lock Analyser (JLA)

� JLA provides profiling data on monitors used in Java applications 
and the JVM:

– Counters associated with contended locks 

– Total number of successful acquires 

– Recursive acquires

– Frequency with which a thread had to block waiting on the monitor 

– Cumulative time the monitor was held. 

– For platforms that support 3 Tier Spin Locking the following are also collected 

– Number of times the requesting thread went through the inner (spin loop) while 
attempting to acquire the monitor. 

– Number of times the requesting thread went through the outer (thread yield loop) 
while attempting to acquire the monitor. 



42

IBM Java Technologies

Java 5.0 RAS |  Java 5.0 Tools and Capabilities  |  WebSphere User Group, Edinburgh 2007 © 2007 IBM Corporation

Java Lock Analyser (JLA)



43

IBM Java Technologies

Java 5.0 RAS |  Java 5.0 Tools and Capabilities  |  WebSphere User Group, Edinburgh 2007 © 2007 IBM Corporation

JLA Data Provided



44

IBM Java Technologies

Java 5.0 RAS |  Java 5.0 Tools and Capabilities  |  WebSphere User Group, Edinburgh 2007 © 2007 IBM Corporation

Discussion / Questions


