
Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.
.

An introduction to
Spring

Adrian Colyer, CTO, Interface21
adrian.colyer@interface21.com

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Who am I?

• CTO, Interface21
– the company behind the Spring Framework
– and many related projects in the Spring portfolio

• In addition to overall responsibility for Spring
portfolio…
– Leader AspectJ project on Eclipse.org
– Leader Spring OSGi project
– Founder AJDT project
– Committer on Core Spring

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Agenda

• What is the Spring Framework?
– and what does it do for me?

• Spring concepts
– dependency injection, aop, and portable service

abstractions
– typical application architecture

• Spring in the data access layer
• Spring in the service layer
• The bigger picture

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

What is the Spring Framework?

• A lightweight container for application objects
– lifecycle management
– dependency management and wiring
– non-invasive enterprise services

• A set of modules simplifying common
enterprise application development tasks
– persistence
– messaging
– …

• An approach to building enterprise applications

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

The Spring approach

• Program simply using objects
– aka "POJOs"
– non-invasive
– object-oriented

• Retain architectural choice
– no environmental assumptions or

dependencies in application objects

• Facilitate test-driven development

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Examples
• A Spring "bean" is just an instance of a regular

class
– no need to depend even on Spring APIs

• Can be made transactional
– without needing to know about any transaction APIs

• Can be exposed for management via JMX
– without needing to know about any JMX APIs or

conventions

• Can be tested in isolation
– as a "unit" during unit testing
– in integration testing outside of the app. server

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Example : Voca
• Part of UK’s Critical National Infrastructure

– Process Direct Debits, Direct Credits and Standing Orders to
move money between banks

– Over 5 billion transactions worth €4.5 trillion in 2005

– 15% of Europe’s Direct Debits and Direct Credits are
handled by Voca

– Over 70% of the UK population use Direct Debits to pay
household bills; Direct Credits are used to pay over 90% of
UK salaries

– Over 72 million items on a peak day

– They have never lost a payment

• In production on Spring-based implementation of
this infrastructure
– replaced existing mainframe system

– better scalability and throughput!

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

The Spring approach

s i m p l e

f
l
e
x

b
l
e

o b j c t o r i n t e d
t
e
s
t
a
b
l
e

3

1

4

2

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

The Spring approach

 Simple does not mean

 simplistic

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

The Spring approach

Simpler can be more

 powerful

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Example

• Components are simple Java objects that know
nothing about the execution environment
– can switch from local to global transactions with only

a configuration change
• architectural decision can be deferred

– can take advantage of underlying infrastructure
without coupling code

• e.g. WebLogicPlatformTransactionManager

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.
.

Spring Concepts

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Simple
Object

Enabling Technologies

Simple
ObjectDe

pe
nd

en
cy

 In
je

ct
io

n
AOP

Portable Service Abstractions

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Don't call me, ok?

• Goal: components that are simple units,
testable in isolation
– can't have environmental assumptions in code
– can't have global application knowledge

• beyond "there must exist a service like this and I need
access to it"

– need to eliminate boilerplate, error-prone code

• Fundamentally achieved by "Inversion of
Control"
– bean is given collaborators (no lookups)
– "template" classes handle common interactions

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Dependency Injection

• Following JavaBeans conventions, write a
simple Java class with constructor and/or setter
methods
public class AccountServiceImpl implements
 AccountService {
 private AccountDao accountDao;

 public void setAccountDao(AccountDao dao) {
 this.accountDao = dao;
 }

 …
}

Simple
Object

DI

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Dependency Injection

• Define a component (a "bean") in the blueprint
• Configure its properties

<bean id="accountService"
 class="…AccountServiceImpl">
 <property name="accountDao"
 ref="accountDao"/>
</bean>

<bean id="accountDao"
 class="…HibernateAccountDao">
 …
</bean>

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Spring is responsible for…

• Instantiating component instances
– account service, account dao, session factory, data

source, etc.

• Configuring component instances
– setting simple properties

• Decorating components
– ensuring enterprise services such as transaction

management are in place

• Assembling components into a fully functioning
application
– wiring components together so that they can do their

jobs

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Core Container

• Facilities provided for configuration and
assembly are extensive
– no need to "code for Spring"
– can configure Spring to work with existing classes

• Lifecycle management
– singleton
– prototype
– request
– session
– global session

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Typical application layering

RDBMS

Domain
objects

DAO implementations

Data Access interfaces

Service implementations

Service interfaces

Web interface
(MVC)

Other remote
interfaces

presentation
layer

service
layer

data access
layer

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Typical application layering

RDBMS

Domain
objects

DAO implementations

Data Access interfaces

Service implementations

Service interfaces

Web interface
(MVC)

Other remote
interfaces

Spring
managed

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Isolated Units

• Web views
– don't know which controller requested them

• Web controllers
– don't know how view objects are found
– don't know where services come from

• Business services
– don't know anything about web layer
– don't know where repository objects come from
– don't know about tx, security etc.

• Data Access objects
– don't know anything about upper layers
– don't know about tx, session management etc.

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Example: data source

public class MyJdbcDao implements MyDao {
 private DataSource dataSource;

 public void setDataSource(DataSource ds) {
 this.dataSource = ds;
 }

 …
}

Simple
Object

DI

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Example: data source

<jee:jndi-lookup id=“dataSource”
 jndi-name=“java:comp/env/jdbc/myds"/>

<bean id="mydao" class="MyJdbcDao">
 <property name="dataSource"
 ref="dataSource"/>
</bean>

• Inside application server

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

<bean id="dataSource"
 class="org.apache.commons.dbcp.BasicDataSource"
 destroy-method="close">
 <property name="driverClassName“ value=“…"/>
 <property name="url" value="${jdbc.url}" />
 <property name="username" value="${jdbc.username}"/>
 <property name="password" value="${jdbc.password}" />
</bean>

<bean id="mydao" class="MyJdbcDao">
 <property name="dataSource"
 ref="dataSource"/>
</bean>

Example: data source

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

AOP

• Dependency injection ensures beans don't
know where collaborators and configuration
comes from

• AOP (aspect-oriented programming) eliminates
dependencies on enterprise service APIs
– (and a lot more besides ;))

• Spring AOP is a simple runtime proxying
implementation
– no special build steps or compilers etc.

• No need to become an AOP expert to take
advantage of the built-in facilities

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Example: Transactions

@Transactional
public class AccountServiceImpl implements
 AccountService {
 private AccountDao accountDao;
 …
 @Transactional(readOnly=true)
 public void Money getBalance(
 Long accountId) { … }
} Simple

Object

AOP

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Transaction blueprint

<!–-
 tell Spring to honour Transactional
 annotations
-->
<tx:annotation-driven/>

<bean id="transactionManager"
 class="org.sfw...DataSourceTransactionManager">
 <property name=“dataSource” ref=“dataSource”/>
</bean>

HibernateTransactionManagerJtaTransactionManager

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Example: Transactions

public class AccountServiceImpl implements
 AccountService {
 private AccountDao accountDao;
 …

 public void Money getBalance(
 Long accountId) { … }
}

Simple
Object

AOP

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Transaction blueprint
<aop:config>
 <aop:advisor
 pointcut="…SystemArchitecture.businessService()"
 advice-ref="txDemarcation"/>
</aop:config>

<tx:advice id="txDemarcation">
 <tx:attributes>
 <tx:method name="get*" read-only="true"/>
 <tx:method name="*"/>
 </tx:attributes>
</tx:advice>

<bean id="transactionManager" … />

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Enterprise application vocabulary

the vocabulary of enterprise

applications

service layer

dao
repository

web layer

data access layer
controller

business service

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Requirements

• Many requirements are expressed in
terms of this vocabulary
– the service layer should be transactional
– when a Hibernate dao operation fails the

exception should be translated
– service layer objects should not call the

web layer
– a business service that fails with a

concurrency related failure can be retried

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Meaningful abstractions

It would be simpler…

 and more powerful

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Meaningful abstractions

if we could use these

 abstractions

directly in the

 implementation

terms

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Scenario…

• You have your own data access layer written
using Hibernate 3
– not using the Spring HibernateTemplate

• In the service layer, you want to insulate yourself
from Hibernate exceptions, and take advantage of
Spring's fine-grained DataAccessException
hierarchy

• After throwing a hibernate exception from a data
access operation, convert it into a
DataAccessException…

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

@Aspect
public class SystemArchitecture {

 …

 @Pointcut("execution(* a.b.c.dao.*.*(..))")
 public void dataAccessOperation() {}

 …
}

Step 1: Define the abstraction
@Aspect
public class SystemArchitecture {

 …

 @Pointcut("execution(* a.b.c.dao.*.*(..))")
 public void dataAccessOperation() {}

 …
}

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Step 2: Use the abstraction

• How do we make use of this
dataAccessOperation abstraction?

• Advice!

• Advice is associated with a pointcut expression
• Executes every time a join point matched by

the expression occurs

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Which advice kind?

• "After throwing a hibernate exception
from a data access operation, convert
it into a DataAccessException…"

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

@AfterThrowing(
 throwing="hibernateEx",
 pointcut="SystemArchitecture.dataAccessOperation()"
)
public void rethrowAsDataAccessException(
 HibernateException hibernateEx) {
 // convert exception and rethrow…
}

After throwing

@AfterThrowing(
 throwing="hibernateEx",
 pointcut="SystemArchitecture.dataAccessOperation()"
)
public void rethrowAsDataAccessException(
 HibernateException hibernateEx) {
 // convert exception and rethrow…
}

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Where does advice live?

• Advice is declared in an aspect
• Aspect are like classes

– instances
– state (fields)
– behaviour (methods)

• Aspects can also have
– pointcuts
– advice
– and a few other things…

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Aspect
@Aspect

public class HibernateExceptionTranslator {

 // …

 @AfterThrowing(
 throwing="hibernateEx",

 pointcut="SystemArchitecture.dataAccessOperation()"

)

public void rethrowAsDataAccessException(

 HibernateException hibernateEx) {

 // convert exception and rethrow…

}

}

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

<aop:aspectj-autoproxy/>

<bean id="hibernateExceptionTranslator"
 class="HibernateExceptionTranslator">
 <property name="hibernateTemplate"
 ref="hibernateTemplate"/>
</bean>

Step 3: Configuration

<aop:aspectj-autoproxy/>

<bean id="hibernateExceptionTranslator"
 class="HibernateExceptionTranslator">
 <property name="hibernateTemplate"
 ref="hibernateTemplate"/>
</bean>

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Portable Service Abstractions

• For when only an API will do
• Template classes based around principle of

inversion of control
• Typically handle

– resource acquisition and release
– exception translation
– iteration (if applicable)

• Leaving you to focus on the business logic

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Example: JdbcTemplate

jdbcTemplate.queryForInt(
 "SELECT COUNT(0) FROM T_CLIENT " +
 "WHERE TYPE=? AND CURRENCY=?",
 clientType,currency);

Simple
Object

PSA

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Example: JdbcTemplate

List<Person> people = template.query(
 "SELECT id,name FROM person",
 new ParameterizedRowMapper<Person>() {
 public Person mapRow(ResultSet rs,int rowNum)

throws SQLException {
return new Person(rs.getLong("id"),

rs.getString("name"));
 }
 }
); Simple

Object

PSA

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

JDBC coding with Spring

With Spring, only the highlighted lines still need to be
coded

1. Define connection parameters
2. Open the connection
3. Specify the statement
4. Prepare and execute the statement
5. Specify loop to iterate through the results
6. Do the work for each iteration
7. Process exceptions
8. Handle transactions
9. Close the connection/return to pool

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

JdbcTemplate: portability

• Sophisticated exception translation
– to fine-grained DataAccessException hierarchy
– used for all persistence modules
– no need to code for specific database

• Consistent approach to
– stored procedures
– stored functions
– LOB handling

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.
.

Spring in the Data Access Layer

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Data Access Layer

• Template classes for wide variety of popular
data access technologies
– JDBC
– iBatis
– Hibernate
– Jdo
– Toplink
– JPA
– …

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Common concepts and approach

• Template class manages resource acquisition
and release, iteration, exception mapping

• Automatically participant in transactions
• Optional DaoSupport superclasses provide easy

access to templates
– HibernateDaoSupport
– JdbcDaoSupport
– JpaDaoSupport
– …

• Fully configured in blueprint

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Transaction management

• Daos automatically participate in transactions
• Simply select the appropriate transaction

manager implementation
– DataSourceTransactionManager -> JDBC
– HibernateTransactionManager -> Hibernate (plus

JDBC)
– JtaTransactionManager -> global transactions

• Spring drives the resource manager APIs as
needed under the covers
– e.g. Hibernate SessionFactory and Session

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Exception translation

• SQLException codes tied to particular database
• Don't want service layer tied to particular

persistence technology (HibernateException vs.
SQLException vs. JpaException …)

• Spring maps exceptions thrown by persistence
APIs into portable service abstraction:
DataAccessException
– fine-grained
– independent of database and driver
– programs simpler and clearer

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Example

• Catch "DataIntegrityViolationException"
– works in all databases
– works through ORM tools
– code is self-documenting

• cf. reliance on SQL error codes
• interpreting codes will fail silently if move database

• Catch "DeadlockLoserDataAccessException"
– etc.

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Spring DAO:
Consistent Exception Hierarchy (subset)

DataRetrievalFailureException

DataAccessResourceFailureException

CleanupFailureDataAccessException

InvalidDataAccessApiUsageException

InvalidDataAccessResourceUsageException

IncorrectUpdateSemanticsDataAccessException

TypeMismatchDataAccessException

OptimisticLockingFailureException

ObjectRetrievalFailureException

DataAccessException

UncategorizedDataAccessException

DataIntegrityViolationException

DeadlockLoserDataAccessException

ObjectOptimisticLockingFailureException

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Integration testing

• Spring places high-value on testing
– make it easy and fast to unit test
– make it easy and fast to integration test persistence

layer
• with live database underneath

• AbstractTransactionalSpringContextTests
– JUnit superclass
– configured with a list of blueprint files
– creates application context
– tests run in transaction

• automatically rolled back
– can mix ORM code with JDBC to verify results

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.
.

Spring in the Service Layer

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Service layer

• Easy to define core business services
• Separate interface from implementation
• All needed service and data access objects are

provided through dependency injection

• Transparent support for
– transaction management
– security (in conjunction with Spring Security)
– management via JMX
– exposing services via remote interfaces

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

JMX example

<bean id="mbeanExporter"
 class="org.sfw…MBeanExporter">
 <property name="beans">
 <map>
 <entry key="i21:service=messageService">
 <ref local="messageService"/>
 </entry>
 <!-- other objects to be exported here -->
 </map>
 </property>
</bean>

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Remoting support

• Expose existing bean for remote access over a variety
of protocols
– coarse grained remoting interface recommended

• Access any remote service over a variety of protocols
• Protocols:

– RMI
– IIOP
– HttpInvoker
– Hessian, Burlap
– SLSB
– Xfire

• See also… Spring Web Services

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Remoting example: exporter

<bean name="/httpInvoker/gameRenter"
 class="o.sfw...HttpInvokerServiceExporter">
 <property name="service" ref="gameRenter"/>
 <property name="serviceInterface">
 <value>
 c.s.training.gamecast.service.GameRenter
 </value>
 </property>
</bean>

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Remoting example: client

<bean id="gameRenterService"
 class="o.sfw..HttpInvokerProxyFactoryBean">
 <property name="serviceUrl">
 <value>
 http://localhost:8080/httpInvoker/gameRenter
 </value>
 </property>
 <property name="serviceInterface">
 <value>
 c.s.training.gamecast.service.GameRenter
 </value>
 </property>
</bean>

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Other key services provided

• JMS integration
– message driven POJOs
– with transactional receive
– JmsTemplate

• Scheduling
– Quartz, JDK Timers

• Asynchronous task execution
– portable abstraction
– several out of the box implementations

• thread pool
• commonj work manager

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.
.

The Bigger Picture

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Web Layer

• Spring MVC
– request-response web framework
– strong separation of model, view and controller
– test units in isolation
– Many view technologies

• JSP/JSTL
• XML & XSLT
• Pdf
• Excel
• Velocity
• Freemarker
• …

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Web Layer

• Binding and validation
• Internationalization
• Themes
• Multipart uploads etc.
• POST-redirect-GET

• Spring WebFlow
– separate project
– for controlled navigation, conversations
– multi-page forms etc.
– back button, history, bookmarking, … Simple

Objects

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Spring Security (Acegi)

• Authentication and authorization
– exceedingly capable, wide range of authentication

mechanisms integrated
• e.g. enterprise single sign-on

• Security at web layer, service layer,
repositories, and even domain objects

• Role-based & ACLs
• Domain-instance protection and filtering
• Remember-me, anonymous, …

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Other Projects

• Spring Web Services
– contract-first web services
– WS-Security integration through Spring Security
– OXM framework (c.f. ORM support)

• Spring LDAP
– LdapTemplate for accessing directories

• Spring Rich Client
– Assemble Swing applications from simple objects +

blueprints

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Other projects

• Spring OSGi
– the ultimate in modularity and runtime control
– versioning, concurrent deployment

• Spring SCA
– support for implementation.spring in SCA

• AspectJ
– full AOP support, tightly integrated with Spring

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.
.

Summary

Copyright 2004-2007, Interface21 Ltd. and its licensors. All rights
reserved. Copying, publishing, or distributing without expressed
written permission is prohibited.

Summary

• Spring is…
– a lightweight container
– a set of modules addressing common enterprise

application development tasks

• Spring promotes
– simple objects, with no knowledge of environment
– easy to test (unit + integration)

• Core concepts
– DI, AOP, Portable service abstractions

• Delivers
– productivity, predictability, quality, scalability

